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Welcome

This webpage presents the technical report describing the sampling design developed for
monitoring boreal birds in Quebec, as part of a nationwide effort to track bird populations
across the underrepresented boreal region. The Quebec design follows the Boreal Optimal
Sampling Strategy (BOSS), a hierarchical, spatially balanced sampling approach that integrates
habitat distribution, cost constraints, and the use of legacy and iconic survey sites to optimize
representativeness while reducing sampling costs. In this report, we detail the spatial layers,
simulations, and methodological adaptations specific to Quebec, as well as the steps used to
determine sample sizes and select survey locations with the Generalized Random Tessellation
Stratified Sampling (GRTS) method.

The online version of this report is hosted at willvieira.github.io/sampling_ BMS and is automati-
cally rebuilt whenever updates are made to the code repository (github.com/sampling  BMS).

This version of the report was generated on 2025-11-19 via GitHub Actions.

License

TBD


https://willvieira.github.io/sampling_BMS/
https://github.com/willvieira/sampling_BMS

1 Introduction

This project is part of a nationwide effort to monitor the status of birds in the underrepresented
boreal region. In this report we describe the Quebec adaptation of the Boreal Optimal Sampling
Strategy (BOSS). The BOSS design is a hierachical sampling approach stratified by ecoregions,
habitat types, and cost constraits (Van Wilgenburg 2020). This structured design provides
a spatially balanced coverage while accounting for rare habitats and sample cost. Here, we
focus on the adaptation of the design for the Quebec province; for a thorough explanation and
discussion of the national strategy, see Van Wilgenburg (2020).

In addition to stratifying the sampling based on habitat distribution and cost constraits, the
BOSS design includes a function to take legacy sites and iconic sites into account. Legacy sites
are existing or historical surveys with data extracted from randomly selected sites, whereas
iconic sites are from non-randomly selected sites. The key reason for integrating legacy or
iconic sites in the sampling design is to keep a representative sample of the community while
reducing the sample cost. This is especially important in Quebec, as there are many historical
data in the southern part of the province. Considering legacy sites in well-covered regions
allows us to allocate ressources to remote areas with less data and higher sampling costs. In
Chapter 5, we detail a novel approach accounting for the number and distribution of legacy
and iconic sites to reduce sample size and maintain a representative sample of habitat types.

Once habitat types, cost constraints, and legacy sites are defined, the BOSS design uses the
Generalized Random Tessellation Stratified Sampling (GRTS; Stevens Jr and Olsen (2004))
method to perform the random sampling. This is a widely used approach to ensure spatially
balanced samples in a region. The GRTS uses a mapping function to transform two-dimensional
space into one-dimensional space with an ordered spatial address. This one-dimensional ordered
space is then randomly reordered before the sampling. This random reordering of the linear,
one-dimensional space ensures a spatially well-balanced sample, whatever the sample size. After
being sampled, this one-dimensional space is then mapped back to the original two-dimensional
space.

This report is divided into two main sections. The first section details the spatial layers to
feed the GRTS algorithm. We begin by describing the study area in the Quebec province, the
selected ecoregions, and the Primary Sample Unit (PSU). We then detail de habitat and cost
layers to weight the inclusion probabilities. Finally, we dedicate a complete section to describe
the simulations used to create the new method to account for legacy and iconic sites. The
first section contains most of the steps that have been regionalized for Quebec. The second
section details the sample steps using the GRTS algorithm. In this second part, we will begin



by describing the method used to calculate the stratified sample size for each of the ecoregions.
We then detail the use of the GRTS to sample the PSUs and the Secondary Sample Unit
(SSU).



2 Sampling frame

2.1 Area of study

The study area for Quebec is outlined in Figure 2.1. It was expanded beyond the Boreal
boundary to include the Arctic ecosystems. The study area contains a total of 7 ecozones, and
their sizes and proportions are described in Table 2.1:

Table 2.1: Area (in hectares) and proportion of ecozones covered by the study area.

Ecozone Area (% prop)

Taiga Shield 56275939 (35.74)

Boreal Shield 51342357 (32.61)

Southern Arctic 27378100 (17.39)
Northern Arctic 12918116 (8.2)
Hudson Plain 6235409 (3.96)
Arctic Cordillera 1713974 (1.09)
Atlantic Maritime 1587877 (1.01)

In order to accommodate habitat heterogeneity, the study area was hierarchically stratified
into different levels of spatial aggregation. Below, we will provide a brief description of each
of these strata, ranging from the ecoregion level to the specific sampling point level. For a
more comprehensive explanation of the reasoning behind each stratification, please refer to
Van Wilgenburg (2020).

2.2 Ecoregion

The ecoregion is the first level of aggregation in the sampling design. The sample size and
habitat inclusion probability (described in the next chapter) are defined for each separate
ecoregion. There are a total of 26 ecoregions in the study area (Figure 2.2), and their details
are described in Table 2.2. Ecoregion 131 was excluded from the study area because it was too
small to support enough sampling points for the random sampling design.
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Figure 2.1: Study area (colored polygons) and its ecozone. The ecozone map was extracted
from the Terrestrial Ecoregions of Canada data product - Government of Canada;
Agriculture and Agri-Food Canada.



Table 2.2: Area (in hectares) and proportion of ecozones covered by the study area.

Code Name Area (% prop)
101 Central Laurentians 19431698 (12.35)
47 Central Ungava Peninsula 18114106 (11.51)
74 New Quebec Central Plateau 17262947 (10.97)
72 La Grande Hills 12929820 (8.22)
75 Ungava Bay Basin 9671186 (6.15)
103 Mecatina Plateau 9388108 (5.97)
100 Riviere Rupert Plateau 9083301 (5.77)
73 Southern Ungava Peninsula 8247511 (5.24)
96 Abitibi Plains 6787969 (4.31)
99 Southern Laurentians 5853410 (3.72)
48 Ottawa Islands 5766770 (3.67)
31 Northern Ungava Peninsula 5714604 (3.63)
28 Meta Incognita Peninsula 5295229 (3.37)
217 James Bay Lowlands 4482672 (2.85)
86 Mecatina River 2552186 (1.62)
46 Southampton Island Plain 2550507 (1.62)
76 George Plateau 2501318 (1.59)
30 Wager Bay Plateau 1908283 (1.21)
7 Kingarutuk-Fraser River 1861164 (1.18)
216 Hudson Bay Lowland 1752738 (1.11)

7 Torngat Mountains 1713974 (1.09)
117 Appalachians 1553719 (0.99)
78  Smallwood Reservoir-Michikamau 1148044 (0.73)
49 Belcher Islands 946717 (0.6)

102 Anticosti Island 790375 (0.5)
131 Iles-de-la-Madeleine 34149 (0.02)

The sample size for this study was determined solely based on the size of the ecoregion. While
the BOSS design considered bird species richness to increase sampling in regions with more
bird species, we chose not to use this metric because it may be biased by sampling efforts in
the southern region, potentially increasing sampling bias in already well-covered regions. Our
goal was to sample 2% of the available hexagons (PSU described below) in each ecoregion.
We defined a hexagon as available for sampling if at least 20% of it contained natural habitat
types.
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Figure 2.2: Ecoregions (code) of the study area. Code description is detailed in Table 2.2.
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2.3 Primary Sampling Unit (PSU)

We followed the BOSS design by using a 5 km diameter hexagon (Figure 2.3) as the Primary
Sampling Unit (PSU). This was the lowest level of aggregation before performing the stratified
sample with the GRTS algorithm. We selected only the hexagons whose centroid fell within
the study area. Similarly, each hexagon was classified into one of the ecoregions using the same
centroid rule. The number of hexagons, available hexagones, and sample size is described in

Table 2.3.

Table 2.3: Distribution of total hexagons, hexagons with at least 20% of natural habitats, and

sample size (2%) across the ecoregions.

Ecoregion Total Available Sample
code Ecoregion name Hexagons Hexagons size
7 Torngat Mountains 866 866 17
28 Meta Incognita Peninsula 65 65 1
30 Wager Bay Plateau 174 174
31 Northern Ungava Peninsula 2307 2307 46
46 Southampton Island Plain 206 206 4
47 Central Ungava Peninsula 9580 9580 192
48 Ottawa Islands 36 36 1
49 Belcher Islands 4 4 0
72 La Grande Hills 7490 7490 150
73 Southern Ungava Peninsula 5019 5019 100
74 New Quebec Central 10773 10773 215
Plateau
75 Ungava Bay Basin 5549 5549 111
76 George Plateau 1482 1482 30
77 Kingarutuk-Fraser River 1184 1184 24
78 Smallwood 715 715 14
Reservoir-Michikamau
86 Mecatina River 1607 1607 32
96 Abitibi Plains 4139 4139 83
99 Southern Laurentians 3563 3563 71
100 Riviere Rupert Plateau 5539 5539 111
101 Central Laurentians 11970 11970 239
102 Anticosti Island 487 487 10
103 Mecatina Plateau 5711 5711 114
117 Appalachians 957 957 19
131 Iles-de-la-Madeleine 10 10 0
216 Hudson Bay Lowland 23 23 0
217 James Bay Lowlands 2293 2293 46

11



2.4 Secondary Sampling Unit (SSU)

For each PSU hexagon, we created a grid of Secondary Sampling Units (SSUs). The SSU
represents the ultimate sampling locations to be utilized in the field. Instead of using the
proposed 300-meter distance from the BOSS design, we followed the approach used in the
Ontario regionalization design, where each SSU was separated by 294 meters. We made this
small reduction in distance to ensure that the same number of SSUs were present across all
PSU hexagons. Figure 2.3 displays the distribution of Secondary Sampling Units (SSUs) within
a hexagon.

12
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Figure 2.3: Distribution of Secondary Sampling Units (SSUs) spaced 294 meters apart within
an Primary Sampling Unit (PSU) hexagon.
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3 Habitat information

3.1 Land cover

To control for relative frequency of habitats within each ecoregion, we used the Land cover
Canada and Land cover Quebec. Both layers have habitat classes at a resolution of 30 meter
pixel. The Land cover of Quebec (source?) has 10 extra classes of habitat when compared to
the Land cover of Canada and is, therefore, more precise to control for habitat heterogeneity.
However, the spatial extension of this layer does not cover all the study area. To avoid conflit
of different sources of information within a ecoregion, the Land cover of Quebec was only used
when it covered the total area of the ecoregion (Figure 3.1). For the remaining ecoregions,
we used the Land cover of Canada, version 2015 (Latifovic et al. 2016). Following the BOSS
design, for both Land cover layers the Snow and ice, water, Urban, and cropland classes were
excluded to keep only the classes of interest for the sampling design.

3.2 Inclusion probability

Inclusion probability based on habitat type was calculated for each ecoregion individually.
Within an ecoregion, it considers the number of habitats and their relative frequency. Let
C'(i,e) be the number of pixels from an ecoregion e that are equal to the habitat ¢ and #H be
the number of habitat classes. Then, the inclusion probability of a habitat within an ecoregion
(P, ) is given by

i,e

-1
p =1
e Clive)

As a result, the likelihood of a habitat being included decreases as the number of pixels increases.
This weighted inclusion probability ensures that rare and abundant habitats are equally likely
to be chosen.

Finally, the inclusion probability of each hexagon is calculated by taking into account the
inclusion probability and the relative frequency of each habitat found within the hexagon. For
each hexagon h from an ecoregion e, their habitat inclusion probability is calculated from all
habitat types i following the equation:

15
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Figure 3.1: Ecoregions using Land cover Canada (red) or Land cover Quebec (blue).
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Phabitath,e = Z C(Y”e) X Pi,e

3.3 Example: Ecoregion 102

Take, for instance, the frequency of pixels per habitat type for the ecoregion 102:

Habitat type Frequency

1 5462771
2 884

) 102195
6 250493
8 165165
10 123548
12 32971
13 3762

14 1683501
16 9437

25 31889
26 1863

27 280462
28 224313
29 18783

The habitat 1 is the most frequent while the habitat 2 the least. Following the equation above,
the inclusion probability of these two habitats are 1.220382e-08 and 7.541478e-05, respectively.
This means that although habitat 1 is 6180 times more frequent than habitat 2, they are equally
likely to be sampled. For a visual example, we show the relative proportion of habitat from a
sample of 10 hexagons with and without inclusion probability Figure 3.2.

17
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Figure 3.2: Example of sampling 10 (2%) hexagons in ecoregion 102 with (left bar) and
without (right) weighted probability accounting for habitat heterogenity. Eeach bar
represents the relative proportion of habitat classes from the 10 selected hexagons.
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4 Cost information

In this section we define our approach to estimate the average access cost for each hexagon. We
begin by describing the information layers used to define transport methods. We then define
our approach to calculate the access cost for each hexagon, given the transport method and its
respective parameters. Finally, we present the equations to calculate the inclusion probability
given the average cost of access.

4.1 Transport layers and access cost

We used four layers of information to calculate the cheapest cost of access of a site: roads,
trails, trains, and airports. Roads are used for truck transport and are mainly available in the
southern part of the study area. Trails are available in more remote areas to be acessed by
ATVs, but is relatively irrelevant given the amout of trails over the study area. Trails are used
by ATVs to access remote areas, but their distribution overlaps with roads. For roads and
trails, a buffer of size specified in Table 4.1 is defined around each line of access to create an
accessible region by these methods of transport. The final access cost (AC) for a method of
transport x is constant inside the buffer and is calculated as:

X nbarus

AC o xcostﬁperﬁday

T

arus_per__crew_per_day

The parameters are defined in Table 4.1, z is either roads or trails. We then rasterized the
road and trail buffer polygons to a 30-meter resolution raster to calualte the minimum cost of
access for each pixel across the study area.

For transport by helicopter, we used the airport and train layers. Since train lines provide a
source of fuel for the helicopters, they are classified as a pseudo-airport for the purposes of
determining the cost of access. Among all airports from Quebec and Labrador, we filtered for
airport classified as Aéroport, Héliport or Aérodrome. We also filtered for airports that have
available fuel or were from either Hydro-Quebec or Administration Régionale Kativik.

Different from roads and trails, the cost of access using helicopters was calculated at the level
of the hexagon as there was little variation within a hexagon. The first step was to calculate
the distance between each hexagon centroid and the closest airport or train line. Given the

19
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Figure 4.1: Transport layers used to calculate the access cost across the study area. Yellow for
roads, green for trails, blue dots for airports, and purple for trains.
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distance between a hexagon h and the closest airport or train line, the average access cost by
helicopter (ACH) was defined as follows:

Where CS is the cost of deplyoing the Autonomous recording unit (ARU) within a hexagon,
CF is the cost of flying to the hexagon, and CB the cost of flying if base camp is needed. C'S
is calculated in function of the number of ARUs deployed in a hexagon, the time it takes to
deploy an ARU, and the cost per hour of the helicopter:

CSy, =nbypys X Hapy X CH gpy

h6hcopterhaurs_flying_within_sa_per_day
helicopter X helicopter

HARU =

crew__size aru__per_person__per_day

CH py = helicopterlipethow x C; + helicoptercostipeuhow

If the distance (d) between the hexagon and the nearest airport exceeds the range of the

helicopter, additional flights will be necessary, increasing the cost per litre of fuel (C)):
h‘elicopterairporticostjeril if d < h‘elicoptermaxikmifromibase

C, = helicopterbaseicostjeril ifd <2x helicoptermaxikmifmmibase

helicopters,q pase cost per | Otherwise

The cost of flying (C'F) to the hexagon from an airport is two times the distance between them,
multiplied by the cost per kilometre:

CF,=2xdx(C,

_ CH pry
helicopter

Cq

relocation__speed

In case a base camp is required due to the long distance of the hexagon, the parameter d from
the equation above becomes the distance between the hexagon and the base camp. Then, the
cost of flying from the airport to base camp (CB) is defined as:

2xd

CBh =dx heliCopterbaseisetupicostﬂperikm+ helz'copter

relocation__spee

21
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Table 4.1: Parameters define buffer, price, and crew support for the different methods of

tranportation.
Parameter Value
nb_arus 5
truck buffer 1000
truck_ cost_ per_ day 600
truck n crews 2
truck_arus_ per_ crew_ per_ day 5
atv_ buffer 1000
atv__cost_per_ day 1200
atv_n_crews 2
atv_arus_per_crew_ per_day 3
helicopter__cost_ per__hour 1250
helicopter _max_km_ from_ base 150
helicopter base setup cost_ per km 9
helicopter_1_per__hour 160
helicopter crew_ size 4
helicopter__aru_ per_ person_ per__day 5
helicopter_ relocation_ speed 180
helicopter__airport__cost_ per_1 1.3
helicopter__base_cost_ per_1 5
helicopter_ 2nd__base_ cost_ per_1 10

helicopter__hours_ flying within_sa_per day 5

4.2 Inclusion probability

To compute the inclusion probability of a hexagon in function of its accessibility, we calculated
a weighted access cost based on the proportions of each access method used in the hexagon.
We used the raster with the minimum cost among roads and trails to estimate the proportion
of the hexagon that is accessible by land. The rest of the hexagon that is not covered by
the road and trail buffer is then only accessible by helicopter. Given all available methods of
transport in a hexagon, the weighted average cost is defined as the sum of the cost of each of
these methods, weighted by their proportion in the hexagon:

S w,Cost,
14 S — Eihhai)
ave - n

t
rge cost, Zi_l w;

Then, for a hexagon h and each method of transport i, its cost inclusion probability P, is

given by:

osty,

22



1
Pcosth =
\/ Waverge cost,

Where w; is the weight given by the proportion of the hexagon accessible by the method .
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5 Legacy and iconic sites

In this section we discuss our approach to account for legacy and iconic sites in the sampling
design. Legacy sites are historical or current surveys in which locations were randomly chosen,
in contrast to iconic sites, which are obtained from non-random surveys. In this report, we will
refer to both iconic and legacy sites as historical sites. These sites are particularly important in
Quebec, where there are a large number of legacy and iconic sites (Figure 5.1). Given the high
cost of sampling in remote regions and the limited resources available to sample, it is essential
to take historical sites into account in order to make the most efficient use of limited resources
to extend spatial coverage to under-sampled areas.

The latest method to integrate legacy and iconic sites is developed in Foster (2021). They
use the position of each historical site to reduce the inclusion probability of neighboring
sites following a kernel distribution, where the legacy effect decreases with distance from a
historical site. However, their approach to incorporate legacy and iconic sites do not explicitly
consider the amount of historical sites, nor the spatial randomness of their distribution. In fact,
their approach naturally ensures randomnly selected sites, as they use only legacy sites while
excluding iconic ones. They justify the exclusion of iconic sites, since these sites are usually
special cases that may not represent the population and therefore generate a biased sample.
Although we agree with the authors, we prioritised expanding the spatial coverage of samples
by reducing the sample size of regions that have been well covered by historical sites.

In the following section we describe the historical sites for the study area. Then, we use two
ecoregions as examples to discuss the decision to also consider sample size while accounting for
historical sites. In the next chapter we describe our novel approach to account for the spatial
randomness of historical sites to adjust the inclusion probability and the sample size. Finally,
we briefly describe previous experimentations to incorporate historical sites.

5.1 Historical sites in the study area

TODO: describe the different sources

24
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Figure 5.1: Legacy and historical sites from the study area.
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5.2 Why should we consider sample size?

Here, we discuss why changing inclusion probability alone is insufficient by comparing two
ecoregions with oposite spatial distributions of historical sites. While the ecoregion 99 has
evenly distributed historical sites over space, the ecoregion 217 present most of its historical
sites around roads. We begin by outlining the method for reducing the inclusion probability
of sites near legacy sites from Foster (2021), which we then apply to the two contrasting
ecoregions.

Every PSU hexagon is assigned an inclusion probability as a function of habitat and access
cost. The effect of a legacy site (1) on the inclusion probability of neighbouring hexagons (h) is
derived from the Euclidean distance between h and [ (d(h,1)), and the amplitude effect o using
a Gaussian function. Figure 5.2 shows the one-dimensional effect of increasing values of o on
the inclusion probability of neighbouring sites.

The method to reduce the inclusion probability of neighbouring sites near legacy sites developed
in Foster (2021) is implemented in the R package MBHdesign. We redrew their illustration
using a simulated grid landscape with three legacy sites to ilustrate the effect of increasing the
o parameter on the inclusion probability of adjacent sites (Figure 5.3).

We applied the same approach for two ecoregion with contrasting spatial distribution of historical
sites. By using the spatially balanced design to sample new sites while omitting historical sites,
the selected hexagons are evenly distributed throughout the ecoregion, some of which overlap
with the historical sites (Figure 5.4). Adjusting the probability of inclusion of hexagons, given
their distance to historical locations, increases the spatial coverage of underrepresented areas
(Figure 5.5).

The issue is that when an ecoregion is well covered by historical sites, the sampled hexagons
are driven to cluster in smaller available areas. When the inclusion probability was adjusted
for ecoregion 99, almost a third of the sampled hexagons were clustered in a 20 km buffer. In
the next section, we will build on this approach so the sample size may also be adjusted in
response to historical sites.

5.3 A new approach to integrate legacy and iconic sites in spatially
balanced designs

Current methods to include historical surveys are limited to randomly selected sites. While they
adjust the inclusion probability to avoid sampling near historical sites, there is no consideration
for sample size adjustment. Here we propose a novel approach where, in addition to modifying
the inclusion probability, we also adjust the sample size according to the distribution of historical
sites.

26
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Figure 5.3: Effect of increasing the effect (sigma) of three legacy sites (white dots) on the
inclusion probability of neighbouring sites. Each square is a simulated sampling
grid with different inclusion probability described by the color gradient. Inclusion
probability increases from dark blue (low) to yellow (high).
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Example of when sampling sites (red dots) using the spatially balanced design
without taking historical sites into account. Ecoregion 99 and 207 are two examples
of legacy sites in which the legacy sites (blue dots) are evenly and non-uniformly
distributed in space, respectively.
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Figure 5.5: Example of when sites are sampled from a design in which only the inclusion
probability is adjusted when incorporating historical sites. Ecoregion 99 and 207
are two examples of legacy sites in which the legacy sites (blue dots) are evenly
and non-uniformly distributed in space, respectively.
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Theoretical description

We use a simulated grid with equal inclusion probabilities for all the 7661 hexagons to illustrate
our approach. Given a 2% sample effort, the sample size for the model grid is 153 hexagons.
We used two scenarios with contrasting spatial distributions of historical sites to show how
their distribution affect sample size (Figure 5.6). The first scenario (red dots) describe evenly
distributed historical sites, while the second (blue dots) describes historical sites grouped in
two spatial clusters.

The main idea of adjusting the inclusion probability is that the population present in the region
around historical sites are well represented by the existing sample. We build on this rationale
to propose that the sample size of an ecoregion can be similarly adjusted given the spatial
coverage of historical sites within the ecoregion. The total coverage of a historical site can be
defined by a buffer of size s. Then, the total area of the ecoregion is subtracted by the total
area covered by historical sites to determine the final sample size for an ecoregion. By adding a
buffer size to the historical locations in our grid example, the balanced scenario covered 14% of
the total area, whereas the unbalanced scenario only covered 7.5% (Figure 5.7). Due to their
clustered distribution, the unbalanced historical sites in this example are only 50% as effective
at reducing the sample size as the balanced sites. This approach hopes to solve the two issues
that emerged when only inclusion probability was adjusted. First, it offers the opportunity to
use both legacy and iconic sites, regardless of the randomness of their distribution. Finally, it
enables us to accommodate the number and distribution of historical sites in order to adjust
the sample size and avoid clustered samples in ecoregions with adequate coverage.

The unsolved issue is how to define the optimal value for the coverage of a historical site
(s). In a perfect spatial balanced distribution of historical sites, the adjusted sample size of
an ecoreregion should be reduced by the total number of historical sites. Take, for instance,
an ecoregion with initial sample size of 80 hexagons. The presence of 10 spatially balanced
historical sites should yields an adjusted sample size of 70 hexagons. Then, the optimal buffer
size s must produce an adjusted sample size (N,,;) that equals the difference between the

initial sample size (NVp,..) and the number of historical sites (IV,,;,;), given the historical sites
are spatially balanced across the ecoregion (Figure 5.8).

With this approach, we are able to determine the ideal buffer size that will allow us to reduce
the sample size without compromising the spatial representation of the initial sampling effort.
This simulation-based strategy, however, is sensible for the fixed number of historical sites
determined a priori. In the example grid used in Figure 5.8, we simulated 20 historical sites,
which represents a 0.2% of the total hexagons in the sample grid. We simulated different sets
of historical sites ranging from 5 (0.07%) to 1400 (20%) to illustrate its impact on the effect of
buffer size on the adjusted sample size (Figure 5.9).

As expected, increasing the proportion of historical sites increases the rate of change (slope) of
the buffer size effects on the adjusted sample size. Using the same simulations, we computed
the optimal buffer size for each of the proportion of historical sites (%) so the adjusted
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Two scenarios of spatial distribution of historical sites
balanced: 20

unbalanced: 20

Figure 5.6: Simulated grid with equal inclusion probabilities among the 7661 hexagons. Two

scenarios of historical sites consisting of 20 sites each illustrate the effect of evenly
distributed (blue) and clustered historical sites on the sample size.
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Figure 5.7: Grid of sample units and historical sites spatially balanced (blue) and unbalanced
(red) for a simulated region. Using the same approach for adjusting the inclusion
probability, a buffer around each historical site is created to calculate the adjusted
sampled size.

sample size (IN,4;) equals the difference between the initial sample size (Nj,,.) and the number
of historical sites (N,;,;) (Figure 5.10). Interestingly, increasing the proportion of historical
sites increases the optimal buffer size up to a point until it reaches the sample effort (specified
to 2% for the figure). The optimal buffer size reduces as the proportion of historical sites
increases for proportions greater than the specified sampling effort.

To illustrate the effect of different sampling efforts on the relationship between the proportion
of historical sites and the optimal buffer size, we simulated sampling efforts ranging from 1 to
20%. (Figure 5.11).

The fact that the optimal buffer size changes with the number of historical sites in a region
may be related to buffer coverage overlapping between historical sites and the border effects
where coverage does not have effect on sample size. As a result, the optimal buffer size may
also depend on the size and shape of the sample grid.However, given that the shape and size of
the ecoregions are not adjustable, we decided to not test for these variables.

Results

Following the theoretical development, we performed the identical simulations using actual
ecoregion boundaries rather than simulated grids. We simulated spatially balanced historical
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Figure 5.8: Effect of the buffer size, determining the coverage of historical sites, on the adjusted
sample size for a simulated grid with equal inclusion probabilities. Given a spatially
balanced distribution of historical sites, the optimal buffer size is determined when
the adjusted sample size equals the difference between the initial sample size (N
base) and the number of historical sites (N hist). The color gradient around the
mean black line represents the 95%, 80%, and 50% confidence intervals for 50
replications of random generated spatially balanced historical sites.
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Figure 5.9: Effect of the buffer size on the adjusted sample size while controling for relative

abundance of historical sites in the sample grid. Relative proportion of historical
sites in the sample grid ranged from 0.07 to 20%.
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Figure 5.10: Optimal buffer size in function of the proportion of historical sites to the total
number of hexagons. Each dot is a replication of the simulated increase of
proportion of historical sites. A small amount of noise around each dot was
added for visualization purposes. Blue line is smooth estimation using Generalized
additive model to demonstrate the exponential effect of the proportion of historical
sites on the optimal buffer size.
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Figure 5.11: Optimal buffer size in function of the proportion of historical sites for different
sampling efforts ranging from 1 to 20%. For clarity, we choose to omit the data
points and illustrate only the smooth estimation using Generalized additive model.

37



sites across the ecoregions with relative proportions to the total number of hexagons ranging
from 0.2 to 12%. For each value of proportion, we calculated the adjusted sample size for
different buffer sizes with radius ranging from 4 to 40 km. Ecoregions 131, 28, 30, 46, 48, 49,
and 216 were excluded due to the very small size that would result in zero generated historical
size for most of the simulation sets.

The effect of buffer size and the proportion of historical sites on the adjusted sample size using
the ecoregion boundaries were similar to those performed using a simulated grid (Figure 5.12).
The effect of increasing the buffer size on the reduction of the adjusted sample size is non-linear,
with the rate of change increasing as the number of historical sites rises.

This non-linear relationship can be observed in the effect of the number of historical sites on
the optimal buffer size when calculating the optimal buffer size. (Figure 5.13). The optimal
buffer size increases with the number of historical sites up to a point where it decreases for
most ecoregions as the proportion of historical sites increases. Only the ecoregion 131 show a
slight decrease in optimal buffer size with the number of historical sites.

Across the simulations and replications, the distribution of optimal buffer size follows a bimodal
distribution.(Figure 5.14).

The case of ecoregions 99 and 217

We apply our approach to reduce the same size in function of the number and distribution of
historical sites for two contrasting ecoregions. The ecoregions 99 and 217 have 579 (16.2%) and
97 (3.5%) hexagons classified as historical sites, respectively. While the number of historical
sites outweighed the sampling effort (2%), the spatial distribution of these sites varied depending
on the ecoregion. Spatial distribution of historical sites was balanced in ecoregion 99, but
clustered in ecoregion 217. As a result, the adjusted sample size for these two ecoregions should
also be different.

The optimal buffer size in fuction of the proportion of historical sites for the ecoregions 99
and 217 was 19.2 and 30.8 Km, respectively. The adjusted sample size taking into account the
distribution and number of historical sites was reduced from 72 to 3 for ecoregion 99, and from
56 to 22 for ecoregion 217 (Figure 5.15).

Limitations

In order to achieve an optimal design, additional simulations may be required to fine-tune the
parameters. While we have accounted for spatial coverage in adjusting the sample size, this
approach could be also extended to include habitat distribution in order to better account the
effect of legacy sites in the sampling design.
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Figure 5.12: Adjusted sample size in function of buffer size for different proportion of historical
sites compared to initial sample size. When buffer size and proportion of historical
sites equals zero, adjusted sample size is equal to the initial sample size.
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Figure 5.13: Optimal buffer size in function of the proportion of historical sites to the initial
sample size. Each dot is a replication of the simulated increase of proportion of
historical sites. Blue line is smooth estimation using Generalized additive model
to demonstrate the exponential effect of the proportion of historical sites on the
optimal buffer size.
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Figure 5.15: Distribution of historical sites and their coverage according to the optimal buffer
size specific for the ecoregion.
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6 Primary sampling unity

The GRTS algorithm is used for the stratified selection of hexagons (PSUs) to ensure spatially
balanced samples in a region. In our case, the GRTS sampling is stratified at the ecoregion
level, meaning that the random tessellation for spatially balanced hexagons is carried out
separately for each ecoregion. Thus, the sample size and inclusion probabilities are determined
at the ecoregion stratum level. In the previous section, we discussed in detail the process to
define the inclusion probability of each PSU hexagon within an ecoregion using three layers of
information: habitat, cost, and historical sites. In this section, we explain how we combine
these three layers of information into a single value of inclusion probability, which weighs the
selected PSU according to the frequency of habitat, the cost of sampling, and the proximity to
a historical site. We then describe the necessary parameters for the GRTS. Finally, we detail
the GRTS output layers and the export process. While this section provides an overview of
our approach, along with key decision, we have also developed a detailed guide that includes
step-by-step instructions that accompany the R code to demonstrate how to implement the
sampling design.

6.1 Inclusion probabilities

Following the BOSS design (Van Wilgenburg 2020), the first step in defining the hexagon
inclusion probability is to merge the habitat and cost probabilities. Given they have similar

importance weight, the inclusion probability of a hexagon h from an ecoregion e is defined
by:

Phabitath@ x P
h‘n
Z (Phabitath.e X Pcosth>

Ph,e_

Where Py, pi1q¢ 18 the habitat inclusion probability (Chapter 3) and P, ., is the cost inclusion
probability (Chapter 4). The product of inclusion probabilities between habitat and cost layers

is normalized so that it adds up to 1 across all available hexagons within the study area.

The final stage involves modifying the inclusion probability P, ., for neighboring hexagons
located near historical sites. To achieve this, we used the MBHdesign R package, which adjusts
the inclusion probability according to a predefined bufferSize_p parameter (discuted bellow).
The method employed in the R package uses a Gaussian function to reduce the inclusion
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probability on neighboring hexagons, with its impact diminishing as distance from the historical
site increases (more details in Chapter 5).

6.2 User paramaters

To run the GRTS, the first required parameter is the list of ecoregions to be included in the
sampling design, which enables us to concentrate on particular ecoregions of interest. In order
to ensure that the selected hexagons have natural habitats suitable for sampling, we apply a
filter to keep only the hexagons with a specific proportion of non-NA pixels. The prop_na
parameter is used to define this threshold, our default value was defined to 0.8 which means
that a hexagon must have at least 20% of natural habitat to be available for sampling.

After filtering the ecoregions and hexagons following the above rules, the next step is to
determine the sample effort. As discuted in Chapter 2, we determined the sample size solely
based on the size of the ecoregion, with target of sampling 2% of the available hexagons
(Table 2.1). We then adjusted the sample size for each ecoregion based on the number and
distribution of historical sites present in that ecoregion (Chapter 5). To do this, we need
a list of historical sites and their coordinates to adjust the sample size. We also need the
bufferSize_N parameter to determine the range of influence of historical sites on reducing the
sample size. This parameter can be either a list of buffer sizes for each ecoregion or a single
distance value applied to all ecoregions. Similarly, we used the bufferSize_p parameter to
determine the range effect of the historical sites on the inclusion probability. Finally, we set
the number of replications for the GRTS algorithm to run.

6.3 Selected layers

We used the grts() function available in the R package spsurvey version v5.0 or above. To
run the function, we have to provide few arguments. The first argument is the sframe, which
consists of the point grid and included the coordinates of the hexagon centroid. The second
argument is the n_base, which specifies the sample size for each ecoregion stratum. We used
the same stratum object for the n_over argument, which samples a supplementary layer of
hexagons (herein called the over layer) available if any of the main hexagons were unavailable
for any reason. The final two arguments are the column names for the stratum name (ecoregion
code) and the inclusion probability of each hexagon point sample.

After defining the arguments, we execute the GRTS function with nb_rep replications. For
each replication, we compute the total cost of sampling all selected main hexagons in the
study area and select the replication with the lowest cost. Since the over layer obtained by
the grts sampling is randomly selected in the stratum space, we also create an additional layer
of hexagons that are obligatory next to the selected main hexagons. For each selected main
hexagon, we extract all neighboring hexagons and choose the one with the highest inclusion
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probability. If a selected main hexagon has no available neighboring hexagon, we will randomly
select one within the ecoregion.

After running the GRTS sampling, we obtain three layers of PSU hexagons: main, over, and
extra. We export these layers of selected hexagons in two different ways. The first one is a
single shapefile for each layer of selected hexagons. The second way is shared the three layers
of selected hexagons into a folder specific to the ecoregion. After defining the output folder to
save, and the prefix arguments, the final tree of exported files follows:

Once the GRTS sampling is completed, we obtain three layers of selected PSU hexagons called
main, over, and extra, plus the layer with all available hexagons of the study area called ALL.
We export these layers of selected hexagons in two different ways. The first way is to export
each layer as a separate shapefile and all ecoregion together. The second way, the three layers
of selected hexagons are shared into a folder dedicated to the specific ecoregion. To export
these files, we need to define the output folder to save the files and the prefix arguments to
be added at the end of each shapefile. For instance, let’s define the parameter outputFolder
to selection and the parameter fileSuffix to V2023. The exported PSU file tree for the
hypothetical ecoregions 101, 102, 10, and 104 will have the following format:

/tmp/RtmpQ7bSpb/selection

+-- allEcoregion

| +-- PSU-SOQB_ALL-V2023.shp

| +-- PSU-S0QB_extra-V2023. shp

|  +-- PSU-SOQB_main-V2023.shp

|  \-- PSU-SOQB_over-V2023.shp

\-- byEcoregion
+-- ecoregion_101
| +-- PSU-SOBQ_eco101_ALL-V2023.shp
| +-- PSU-SOBQ_eco101_extra-V2023.shp
| +-- PSU-SOBQ_eco101_main-V2023.shp
| \-- PSU-SOBQ_eco101_over-V2023.shp
+-- ecoregion_102
|  +-- PSU-SOBQ_eco102_ALL-V2023.shp
| +-- PSU-S0BQ_eco0102_extra-V2023.shp
|  +-- PSU-S0BQ_eco102_main-V2023.shp
| \-- PSU-SOBQ_eco0102_over-V2023.shp
+-- ecoregion_103
|  +-- PSU-S0BQ_eco103_ALL-V2023.shp
|  +-- PSU-SOBQ_eco103_extra-V2023.shp
| +-- PSU-SOBQ_eco0103_main-V2023.shp
| \-- PSU-SOBQ_eco0103_over-V2023.shp
\-- ecoregion_104

+-- PSU-SOBQ_eco104_ALL-V2023.shp
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+-— PSU-S0BQ_eco104_extra-V2023.shp
+-- PSU-SOBQ_eco0104_main-V2023.shp
\-- PSU-SOBQ_eco104_over-V2023.shp
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7 Secondary sampling unity

In this section we provide a detail our approach for selecting the Secondary Sampling Units
(SSUs). Unlike the PSU sampling, the SSU sampling approach differs significantly from the
BOSS design. For each selected hexagon, we create a grid of SSU points spaced 294 meters
apart to perfrom the sampling (Figure 7.1). The chosen spacing value was optimized using

the Ontario regionalization method to ensure that each hexagon contains an equal number of
SSUs.

60.06°N
60.05°N
60.04°N
60.03°N

60.02°N
65.46°W 65.44°W 65.42°W 65.40°W 65.38°W

Figure 7.1: The green dots represent the Secondary Sampling Units (SSUs), which are spatially
separated from each other by a distance of 294 meters. A buffer with a diameter of
147 meters was created around each SSU to extract the habitat pixels.

For each SSU point within the PSU, we generate a buffer with a distance of 147 meters. We
then extract the habitat pixels to compute the inclusion probability of each SSU point following
the same approach used for the PSU (Chapter 3). This process allows us to calculate the
habitat inclusion probability and the proportion of non-empty habitats pixels for each SSU
hexagon.

48



The final Step in the process of prepareing the SSU for sampling is to assign a matrix of
neighouring SSU points for each focal SSU. This is important because each SSU is classified as
available to be sampled in function of its proportion of non-empty habitats pixels, the number
of neighbours SSU, and the proportion of non-empty habitats pixels of the neighbours SSUs.
Specifically, for a SSU to be available for sampling it must have:

The next step is to assign a matrix of neighboring SSU points for each focal SSU. This is crucial
because the availability of each SSU for sampling is determined based on its proportion of
non-empty habitat pixels, the number of neighboring SSUs, and the proportion of non-empty
habitat pixels of those neighbors. Specifically, to be considered available for sampling, a SSU
must meet the following criteria:

o Have exactly 6 neighbors (fewer indicates being on the border of the PSU hexagon)
o Possess at least 80% non-empty pixels (prop_na = 0.8), similar to the PSU sampling
o Have at least 4 out of the 6 neighboring SSUs with at least 80% non-empty pixels

After defining the availability of each SSU, we proceed with a random sampling of SSU points,
weighted by their habitat inclusion probability. The SSU sampling is performed sequentially,
meaning that for each SSU selected within a PSU hexagon, its six neighbors are automatically
marked as unavailable for the next sampling round. This procedure prevents the clustering
of SSU samples in a single region. The SSU sampling continues until it reaches the desired
SSU sample size (defined by ssu_N), or until there are no more available SSUs remaining. The
selected SSU points, along with their respective neighbors, are classified using the AB code
pattern (Figure 7.2). Here, A represents the SSU sample ID, ranging from 1 to ssu_N, while
B represents the neighbor ID, ranging from 0 to 6. In this pattern, 0 denotes the focal point,
while 1 to 6 represent the six neighbors, starting from the North point and moving clockwise.

Once the sampling process is completed, we obtain multiple SSU points for each hexagon from
one of the three layers of selected PSU hexagons: main, over, or extra. We export both all
SSU points and the selected SSU points for each selected hexagon from the three PSU layers.
The export of SSU points follows a similar approach to the export of PSU hexagons. We first
export each layer as a separate shapefile, including all ecoregions together, and then create
separate shapefiles for each ecoregion. Using the same export parameters utilized in the PSU
sampling, the SSU shapefiles will be exported as follows:

/tmp/Rtmp2Vj9Lt/selection

+-- allEcoregion

|  +-- SSU-SOQB_ALL_extra-V2023.shp

| +-- SSU-SOQB_ALL_main-V2023.shp

|  +-- SSU-SOQB_ALL_over-V2023.shp

| +-- SSU-S0QB_selected_extra-V2023.shp
|  +-- SSU-SOQB_selected_main-V2023.shp
| \-- SSU-SOQB_selected_over-V2023.shp
\-- byEcoregion
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Figure 7.2: Selected SSU points (green) and their respectice neighboring (yellow).
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ecoregion_101

+-- SSU-SO0BQ_eco101_ALL_extra-V2023.shp

+-— SSU-SO0BQ_eco101_ALL_main-V2023.shp

+-— SSU-S0BQ_ecol101_ALL_over-V2023.shp

+-- SSU-SOBQ_eco101_selected_extra-V2023.shp
+-— SSU-SO0BQ_eco101_selected_main-V2023.shp

\-- SSU-SOBQ_eco101_selected_over-V2023.shp

ecoregion_102

+-- SSU-SO0BQ_eco102_ALL_extra-V2023.shp

+-— SSU-S0BQ_eco102_ALL_main-V2023.shp

+-- SSU-SO0BQ_eco102_ALL_over-V2023.shp

+-— SSU-S0BQ_eco102_selected_extra-V2023.shp
+-- SSU-SO0BQ_eco102_selected_main-V2023.shp

\-- SSU-SOBQ_eco102_selected_over-V2023.shp

ecoregion_103

+-- SSU-SOBQ_ecol103_ALL_extra-V2023.shp

+-— SSU-SO0BQ_ecol103_ALL_main-V2023.shp

+-— SSU-S0BQ_ecol103_ALL_over-V2023.shp

+-— SSU-S0BQ_eco1l03_selected_extra-V2023.shp
+-- SSU-SOBQ_eco103_selected_main-V2023.shp
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\-- SSU-SOBQ_eco103_selected_over-V2023.shp
ecoregion_104

+-— SSU-S0BQ_eco104_ALL_extra-V2023.shp

+-- SSU-SOBQ_eco104_ALL_main-V2023.shp

+-— SSU-S0BQ_eco104_ALL_over-V2023.shp

+-- SSU-SOBQ_eco104_selected_extra-V2023.shp
+-— SSU-S0BQ_eco104_selected_main-V2023.shp
\-- SSU-SOBQ_eco104_selected_over-V2023.shp
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8 A guide for BMS sampling design with R

In this section, we will provide an overview and explanation of the code used for the final step
of the BMS sampling design. This report is designed to be self-contained and provides all
the necessary steps for processing the data layers in conjunction with the GRTS algorithm
to perform the sampling. The complete procedure, including code for data preparation and
analysis, is organized in sequential R scripts and can be found in the GitHub repository. This
specific report refers to the R script 08_runGRTS.R.

8.1 Setup

Bellow we list the packages used in the sampling process. Note that the code described in the
report is only compatible with spsurvey R package versions v5.0 and above. For consistent
results, we recommend loading the same environment that was used in this project, which is
saved in the renv.lock file. The following steps can be used to load the same environment:

# install "renv  package if necessary

if (!require(renv)) install.packages('renv')
# Restore the project environment
renv::activate(project = "/path/to/project")

The first line of code will check load (and install if necessary) the R pacakge renv to manage
the version of the dependences. The activate() function will install all necessary packages
with their respective version into a local container accessible only by this project. If you’re not
already in the path of the project, make sure to replace /path/to/project with the path to
the directory where the project is stored.

library(raster)
library(exactextractr)
library(tidyverse)
library(spatstat)
library(sf)

library (spsurvey)
library(MBHdesign)
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# to reproduce the same results
set.seed(0.0)

8.2 Custom parameters

Here is the main section the user will need to interact. Below is a list of all the variables that
can be used to customize the sampling process, each accompanied by detailed comments.

Threshold to determine whether a hexagon is suitable for sampling is based on
the proportion of NA pixels (non-natural habitat).

"0.8" means a hexagon has to have at least 20% of habitat pixels to be
suitable for sampling

prop_na = 0.8

#
#
#
#

# Sample effort in percentage
sample_effort = 0.02

# Total sample size for SSU within a hexagon (Main + Over)
# It must be an even numbers
ssu_ N = 6

# Number of replications when selecting the PSU with the GRTS algorithm
nb_rep = 15

# Code of ecoregions to sample

eco_sim = c(
‘7', '28', '30', '31',
'46', '47', '48', '49',
'r3', ‘'rr', '78', '86',
'72', 'r4', '75', '76',
'96', '99', '100', '101',
'102', '103', '117',
'216', '217'

# File path of the csv file used to store the legacy sites

# E.g. https://github.com/willvieira/sampling_BMS/blob/main/data/legacySites.csv
# “lat’ and “lon  arguments are used to define the character name of the

# columns in the csv

and columns to extract legacy sites

legacyFile = file.path('..', 'data', 'legacySites.csv')
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lat
lon

'latitude'
'longitude’

# Buffer size (in Km) to adjust inclusion probability of hexagons around the
# legacy sites using the MBHdesign R package
bufferSize_p = 10

# Buffer size (in Km) to adjust the sample size of an ecoregion as a function of
# the number and distribution of its legacy sites

# The value provided can either be a single number applied to all ecoregions or

# a file path containing the buffer size information for each ecoregion.

# E.g.https://github.com/willvieira/sampling BMS/blob/main/data/bufferSize_N.csv
bufferSize N = file.path('..', 'data', 'bufferSize N.csv')

# If you want to assign the same buffer size (in Km) for all ecoregion:

# bufferSize N = 15

# Distance between SSU centroid (in meters)
ssu_dist = 294

# Path to save the shapefiles with the selected PSU and SSU
outputFolder = file.path('output', 'selection2023')

# suffix to add for each output layer
# e.g.: PSU-SO0QB_ALL-SUFFIX.shp
fileSuffix = 'V2023'

8.3 Prepare layers for sampling

The first step is loading the complete hexagons list within the study area. While loading, we
keep only the hexagons for the ecoregions of interest (eco_sim) and remove the hexagons with
too many NA habitats. We then compute the hexagon inclusion probability from the habitat
and cost layers normalized for the study area.

hexas <- readRDS(file.path('..', 'data', 'hexa_complete.RDS')) [>
filter(propNA <= prop_na) [>
filter(ecoregion %inj, eco_sim) |>
mutate (
p = (hab_prob * cost_prob) / sum(hab_prob * cost_prob)
) 1>
filter(p != 0)
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The legacy sites are the second layer of information needed to run the GRTS. Bellow the code
is written to load the list of coordinate points from the legacy sites and create a data frame
describing the count number of legacy sites per hexagon. This procedure scales the point
data to the hexagon level, allowing us to modify the inclusion probability of the neighboring
hexagons and adjust the ecoregion sample size.

# function to transform Latitude & longitude legacy site points in a table
# with the number of points per hexagon ID (ET_Index)
import_legacySites <- function(File, lat_name, lon_name)

{
# transform hexagons projection to the same of the legacy points
hx <- hexas |[>
st_transform(4326)
# read legacy csv file
lg <- read_csv(File, show_col_types = FALSE) |>
rename (
lat = all of(lat_name),
lon = all_of (lon_name)
) 1>
st_as_sf(
coords = c('lon', 'lat'),
crs = st_crs(hx)
)
# intersect legacy points with hexagon polygons
nblegacy <- hx |[>
st_contains(lg, sparse = FALSE) |>
apply (1, sum)
# Return a transformed data to data.frame
# and keep only the hexagons that contains legacy sites
tibble(
ET_Index = hx$ET_Index,
nbLegacySites = nbLegacy
) 1>
filter(nblLegacySites > 0)
}

# load and transform legacy sites (slow function)
legacySites <- import_legacySites(

File = legacyFile,

lat_name = lat,
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lon_name = lon

# merge legacy sites data.frame into hexagon object
hexas <- hexas |[>

left_join(legacySites) [|>

mutate (nbLegacySites = replace_na(nbLegacySites, 0))

8.4 Adjust sample size and inclusion probability as a function of
legacy sites

After merging the hexagons and legacy sites, the next step is to adjust the sample size and
modify the inclusion probabilities. The sample size, defined in the number of hexagons, is
defined in function of the size of the ecoregion, the sampling effort (sample_effort), and the
number of legacy sites. The input bufferSize_N quantify the effect of each legacy site in
reducing the final sample size. The value provided can either be a single number that will
be applied to all ecoregions or a file path that contains the buffer size information for each
individual ecoregion. For more details on defining the buffer size to adjust the sample size,
please refer to Chapter 5.

# function to get sample size for a specific ecoregion given:
# number of hexagons, number of legacy sites, bufferSize, and sample effort
get_sampleSize <- function(eco, hx, bf_N, sample_e)
{
# get the hexagons centroid for a specific ecoregion
hexa_eco <- hx |[>
filter(ecoregion == eco) |[>
st_centroid()

if (nrow(subset (bf_N, ecoregion == eco)) > 0) {
# create a buffer of size "BufferSize_ N around the legacy site centroid
hexa_legacy_bf <- hexa_eco [>
filter(nblLegacySites > 0) |[>
st_buffer(subset(bf_N, ecoregion == eco)$bufferSize * 1000) |>
st_union()

# Compute the number of hexagons from the ecoregion in which their
# centroid falls within the buffer around the legacy sites
nbHexas_legacy <- hexa_eco |>

st_intersects(hexa_legacy_bf) [>
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unlist() |[>
sum ()
Yelseq{
nbHexas_legacy = 0O

# Compute the adjusted sample size using only the total amount of hexagons
# that do not fall within the legacy buffer
adj_sampleSize <- round((nrow(hexa_eco) - nbHexas_legacy) * sample_e, 0)

# If the ecoregion is too small to accommodate 2 hexagons with the defined
# sampling effort, ensure to sample at least two hexagons.
if ((nrow(hexa_eco) * sample_e) < 2 & nbHexas_legacy < 1)

adj_sampleSize = 2

return(adj_sampleSize)

# Load buffer size information regardless of the “byfferSize N° class
if (is.character(bufferSize N)) {
if(file.exists(bufferSize N)) {
buffSizeN <- read_csv(bufferSize N, show_col_types = FALSE) |[>
mutate(ecoregion = as.character(ecoregion))

}else{
stop(
pasteO('File "', bufferSize_ N,
'" does not exist. Please check if the name is correct.')
)
}

}else if (is.numeric(bufferSize N)){
buffSizeN <- tibble(
ecoregion = eco_sim,
bufferSize = bufferSize N
)
telsed{
stop('The type of “bufferSize N~ must be either numeric or a character')

# Run the function to define sample size for all selected ecoregions
sampleSize <- map_dbl(

setNames(eco_sim, pasteO('eco_', eco_sim)),

get_sampleSize,
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hx = hexas,
bf N = buffSizeN,
sample_e = sample_effort

# Define the stratum object with ecoregion that have
# at least a sample size of 1
Stratdsgn <- sampleSize[sampleSize > 0]

# Because we are sampling an extra hexagon for each selected one,
# make sure that each ecoregion has at least 2 times more available
# hexagons than sample N
eco_to_remove <- hexas |>
st_drop_geometry() [>
group_by(ecoregion) |>
summarise (nbHexas = n()) |>
left_join(
sampleSize |>
enframe() [>
mutate (
ecoregion = as.character(parse_number(name)),
sampleSize_extra = value * 2
) 1>
select(ecoregion, sampleSize_extra)
) 1>
mutate (
diff = nbHexas - sampleSize_extra
) 1>
filter(diff < 0) |[>
pull(ecoregion)

Stratdsgn <- Stratdsgn[!names(Stratdsgn) %in), paste0('eco_', eco_to_remove)]

# Prepare sample frame to be used in GRTS
# scale inclusion probability to the total sample size
# Use only the centroid of the hexagon as a sample point
sampleFrame <- hexas |>
filter(ecoregion %in’, parse_number (names(Stratdsgn))) |[>
mutate (
eco_name = pasteO('eco_', ecoregion), # to match design name
mdcaty = sum(Stratdsgn) * p/sum(p),
geometry = sf::st_geometry(sf::st_centroid(geometry))
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The last step involves adjusting inclusion probabilities for neighboring hexagons around legacy
sites. To do this, we used the MBHdesign R package and adjusted the inclusion probability
based on the bufferSize_p parameter.

# Coordinates of all hexagons in matrix format for MBHdesign
coord_mt <- sampleFrame |[>
st_coordinates()

# Coordinates of legacy hexagons

legacySites <- sampleFrame |>
filter(nbLegacySites > 0) [>
st_coordinates()

# Adjust inclusion probability of neighbour hexagons in function of legacy sites
sampleFrame$adj_p <- MBHdesign::alterInclProbs(

legacy.sites = legacySites,

potential.sites = coord_mt,

inclusion.probs = sampleFrame$mdcaty,

sigma = bufferSize_p * 1000

8.5 Primary Sampling Unit (PSU)

The spsurvey R package was used to implement the GRTS algorithm for sampling the PSUs
of each ecoregion stratum. The sample size for each stratum, as defined in Stratdsn, is used
to sample the hexagon points from the sampleFrame object. Note that the same sample
size stratum is used for sampling the replacement (n_over) sites for each ecoregion stratum.
Within each stratum, the sample selection is weighted based on the inclusion probability adj_p,
which is derived from the habitat, cost, and legacy site layers. We replicate this sampling
process nb_rep times, sum the total cost of sampling for the selected hexagons, and choose the
replication with the lowest cost.

# list to store the hexagons ID (ET_Index) for the main and the replacement
grts_main <- grts_over <- list()

# Run GRTS selection over nb_rep times

for(Rep in 1:nb_rep)

{

out_sample <- spsurvey: :grts(
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sframe = sampleFrame,
n_base = Stratdsgn,

n_over = Stratdsgn,
stratum_var = 'eco_name',
aux_var = 'adj_p'

grts_main[[pasteO('Rep_', Rep)]] <- out_sample$sites_base$ET_Index
grts_over[[pasteO('Rep_', Rep)]] <- out_sample$sites_over$ET_Index

# Select cheapest replication (based on 'main' selection)
cheapest_rep <- map_df (
grts_main,
~ hexas |>
st_drop_geometry() |>
filter (ET_Index %in% .x) |>
summarise(totalCost = sum(costSum))
) >
pull(totalCost) [>
which.min()

# Save selected main and replacement hexagons
selected main <- hexas |>

filter(ET_Index %inJ, grts_main[[cheapest_repl])
selected_over <- hexas |>

filter (ET_Index %inJ, grts_over[[cheapest_rep]])

Since the replacement hexagons are randomly selected in the stratum space, we also selected
an extra layer of replacement hexagons that are obligatory neighbors of each main hexagon.
For each selected main hexagon, we extract all neighboring hexagons and select the one with
the highest inclusion probability. If a selected main hexagon has no available neighbor hexagon,
we will select a random one over the ecoregion.

# object to store extra layer of selected hexagons
selected_extra <- hexas[0, ]

# loop over ecoregions to make sure neighbours are from the same ecoregion
for(eco in parse_number (names(Stratdsgn)))
{

hexas_eco <- subset(hexas, ecoregion == eco)

hexas_sel_eco <- subset(selected_main, ecoregion == eco)
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# Extract neighbours hexagons
neigh mt <- hexas_eco |[>
st_centroid() |>
st_intersects(
y = st_buffer(hexas_sel_eco, dist = 3500),
sparse = FALSE

# Remove the focus hexagon (the selected one)

rr = match(hexas _sel eco$ET_Index, hexas eco$ET_Index)
cc = seq_along(rr)

neigh mt[rr + nrow(neigh_mt) * (cc - 1)] <- FALSE

# Select the extra hexagon based on the highest p
best_p <- apply(
neigh_mt,
2,
function(x)
hexas_eco$ET_Index[x] [which.max (hexas_eco$p[x])]

# if a selected hexagon has no neighbour, select a random from the ecoregion
toCheck <- unlist(lapply(best_p, length))
if (any(toCheck == 0)) {

# which hexagons were not selected?

nonSelected_hexas <- setdiff (hexas_eco$ET_Index, hexas_sel_eco$ET_Index)

# sample from non selected hexas
best_plwhich(toCheck == 0)] <- sample(
nonSelected_hexas, sum(toCheck == 0)

selected_extra <- rbind(
selected_extra,
hexas_eco[match(best_p, hexas_eco$ET_Index), ]
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8.6 Secondary Sampling Unit (SSU)

For each of the selected PSU hexagons (main, over, and extra), we generate a grid of SSU
points equally spaced with a distance defined by ssu_dist. The following function to generate
SSUs is from the Ontario’s sampling approach (code source).

genSSU <- function(h, spacing)
{
ch <- as_tibble(st_coordinates(h))
top_point <- ch[which.max(ch$Y),]
bottom_point <- chlwhich.min(ch$Y),]
gridsize <- 2xfloor(abs(top_point$Y-bottom_point$Y)/spacing)+3
rowAngle <- tanh((top_point$X-bottom_point$X)/(top_point$Y-bottom_point$Y))

cent <- st_centroid(h) %>%
bind_cols(as_tibble(st_coordinates(.))) %>%
st_drop_geometry %>%
dplyr: :select (ET_Index, X, Y)

genRow <- function(cX, cY, sp,...){
tibble(rowid = seq(-gridsize,gridsize)) %>’
mutate(X = sin(60*pi/180+rowAngle) *sp*rowid + {{cX}},
Y = cos(60%pi/180+rowAngle) *sp*rowid + {{cY}})

centroids <- tibble(crowid=seq(-gridsize,gridsize)) %>
mutate(cY = cos(rowAngle) *spacing*crowid + cent$Y,
#spacing/2*crowid + cent$Y,
cX = sin(rowAngle) *spacing+*crowid + cent$X) 7%>%
#cent$X + crowid* sqrt(spacing**2-(spacing/2)**2)) %>/
rowwise() |[>
mutate(row = list(genRow(cX = cX,cY = cY,sp = spacing))) %>%
unnest (row) |>
dplyr::select(X,Y) %>%
st_as_sf(coords = c("X", "Y"), crs = st_crs(h)) %>%
st_filter(h) %>%
mutate (
ET_Index = h$ET_Index,
ecoregion = h$ecoregion,
ssulD = row_number ()
)

return(centroids)
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The following step involves defining a function to sample the SSUs within each selected PSU
hexagon. SSU sampling is done sequentially, so for each selected SSU, the first and second
layers of neighbour points (6 and 12, respectively) are made unavailable for sampling the next
SSU. We repeat this process until we reach the total sampling size (ssu_N) or when there are
no more available SSUs left to sample.

sample_SSU <- function(ssuid, prob, geom, filtered, ssuDist, N)
{
# check if N is even
if(N %% 2 !'= 0)
stop('“ssu_N~ must be a even number.')

filtered_1 <- filtered
out <- rep(0, length(filtered))

# loop to sample N SSUs
count = 1
while(
count <= N &
sum(get (paste0('filtered_', count))) > 1

)
# sample point
assign(
pasteO('sample_', count),
sample (
ssuid[get(pasteO('filtered_', count))],
size = 1,

prob = prob[get(pasteO('filtered_', count))]

# remove points around the first sample for second point
toKeep <- !st_intersects(
geom,
st_buffer(
geom[which(get (pasteO('sample_', count)) == ssuid)],
dist = ssuDist * 2 + ssuDist * 0.1),
sparse = FALSE
)1
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# update available points

assign(
pasteO('filtered_', count + 1),
get(pasteO('filtered_', count)) & toKeep

# assign point to output vector
out [get (pasteO('sample_', count))] = count

count = count + 1
}

return( out )

With these two functions, we can loop over the main, over, and extra selected hexagons to
create and sample SSU points. First, we create the SSU points for all selected hexagons. Then,
we generate a buffer around each SSU point with a distance of ssu_dist/2. We use the habitat
pixels within each buffer to calculate the inclusion probability and the proportion of NA pixels.
To save computation time, we compute and store the six neighbour points around each SSU
point. Before sampling the SSU points, we classify each point as available or not following
these rules:

o it must have 6 neighbours (less than that means it’s a border SSU)
e it must have at least 1 - prop_na of non-empty pixels
e 4 out of 6 neighbours must also meet these rules

In the final step, we assign a specific code to each selected SSU point and its neighbors, following
the A_B pattern, where A represents the SSU sample ID (ranging from 1 to ssu_N), and B
represents the neighbor ID (ranging from 0 to 6). Here, 0 represents the focal point, and 1 to 6
represent the six neighbors, starting from the top point and moving clockwise. please refer to
Chapter 7 for more details.

# Habitat shapefile to calculate inclusion probability

land_ca <- raster(file.path('..', 'data', 'landcover_ca_30m.tif'))
# Distribution of habitat types per ecoregion

prev_all <- readRDS(file.path('..', 'data', 'prev_all.RDS'))

for(lyr in c('main', 'over', 'extra'))
{
sel_lyr <- get(pasteO('selected_', lyr))

# Generate SSU points
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SSUs <- map_dfr(
seq_len(nrow(sel_lyr)),
~ genSSU(sel_lyr[.x, ], spacing = ssu_dist)

# Buffer of half “ssu_dist”™ to compute habitat inclusion prob
SSU_bf <- st_buffer(SSUs, dist = ssu_dist/2)

# extract pixels for each SSU polygon
hab_pixels <- exactextractr::exact_extract(

land_ca,

SSU_bf,

progress = FALSE
)
rm (SSU_bf)

# get frequence of each class of habitat
count_hab <- Map(
function(x, y) {
freq <- table(x$value)
if (length(freq) > 0) {
data.frame(freq, ecoregion = y)
Yelse{
NA

X,
x = hab_pixels,
y = SSUs$ecoregion

# merge with inclusion probability
# and calculate inclusion probability for each NON empty polygon
SSUs$incl_prob <- unlist(
lapply(
count_hab,
function(x) {
if (is.data.frame(x)) {
mg_df <- merge(

X,
subset (

prev_all, ID_ecoregion == x$ecoregion[1]
),
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by.x = "Varl",
by.y "code",
all.x = TRUE

)

sum(mg_df$Freq * mg_df$incl_prob)
Yelse{

NA

)

rm(count_hab)

SSUs <- SSUs |>
group_by(ET_Index) [>
mutate (
incl_prob = incl_prob/sum(incl_prob, na.rm = TRUE)
) >
ungroup ()

# Calculate proportion of NA
SSUs$propNA <- map_dbl(

hab_pixels,

~ sum(is.na(.x$value))/nrow(.x)

)
rm(hab_pixels)

# neighbours matrix
neighbour_1ls <- list()
for(hx in unique(SSUsS$ET_Index))

{
ssuhx <- subset(SSUs, ET_Index == hx)
neighbour_1ls[[hx]] <- st_intersects(
ssuhx,
st_buffer(ssuhx, dist = ssu_dist + ssu_dist * 0.1),
sparse = FALSE
)
}

# These are the following rules to a SSU be suitable for sampling:
# - Must have 6 neighbours (less than that means it's a border SSU)
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# - Must have at least 1 - “prop_na  of non empty pixels
# - 4 out 6 neighbours must also respect the above rule
SSU_selected = SSUs |>

group_by(ET_Index) [>

mutate (
nbNeighb = map_dbl(
ssulD,
~ sum(neighbour_ls[[unique(ET_Index)]JI[, .x]) - 1
)
nbPropNA = map_int(
ssulD,
.f = function(x, pNA, ETI)
sum (
pNA[
setdiff (which(neighbour_1s[[ETI]][, x]), x)
] <= prop_na
oy
pNA = propNA,
ETI = unique(ET_Index)
)
sampled = sample_SSU(

ssuid = ssulD,
prob = incl_prob,
geom = geometry,
filtered = propNA <= prop_na & nbNeighb == 6 & nbPropNA >= 4,
ssuDist = ssu_dist,
N = ssu_N
)
) >
ungroup ()

Prepare selected SSU and their specific neighbours with code like “A_B°
“A° is for the SSU sample ID (1: ssu_N7)

# "B° is for the neighbour ID (0:6 where zero is the focal point, and

# 1:6 are the 6 neighbours starting from the top point moving clockwise)
SSU_lyr <- subset(SSU_selected, sampled > 0)

SSU_lyr_1ls <- 1list(Q)

#
#

for(i in 1:nrow(SSU_lyr))
{

# get neighbours for specific row
nei_hx <- SSU_selected [>
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filter(ET_Index == SSU_lyr$ET_Index[i]) [>
filter(
ssulD %in% which(
neighbour_1s[[SSU_lyr$ET_Index[i]l]] [, SSU_lyr$ssuID[i]]

# code A
nei_hx$codeA <- SSU_lyr$sampled[i]

# code B
nei_hx$codeB <- c(4, 3, 5, 0, 2, 6, 1)

SSU_lyr_1s[[i]] <- nei_hx

}

# save

assign(
paste0('SSU_all_', 1lyr),
SSU_selected

)

assign(
pasteO('SSU_', 1lyr),
do.call(rbind, SSU_lyr_ls)

)

8.7 Export PSU and SSU samples in shapefiles

The purpose of this final section is to export all PSU and SSU points in a shapefile format. The
format was chosen to facilitate post-processing, but it can be modified to fit different needs.
The first code chunk saves all PSU and SSU points into a single file, while the second code
chunk separates the same sampled points by ecoregion.

Grouped ecoregions

savePath = file.path(outputFolder, 'allEcoregion')
dir.create(savePath, recursive = TRUE)

69



varsToRm = c(
'OBJECTID', 'Join_Count', 'TARGET_FID',
'ET_ID', 'ET_ID _0ld', 'ET_IDX_01d'

hexas_save <- hexas |[>
select(-all_of (varsToRm))

# rename attributes table so it has a maximum of 10 characters
names (hexas_save) <- abbreviate(names(hexas_save), minlength = 10)

# add coordinates

coords <- hexas_save |>
sf::st_centroid() [|>
sf::st_transform(4326) |>
sf::st_coordinates() |>
as.data.frame()

hexas_save <- hexas_save |>
mutate (
latitude = coords$Y,
longitude = coords$X

# save all PSU
hexas_save |>
write_sf(
file.path(
savePath,
pasteO('PSU-SOBQ_ALL-', fileSuffix, '.shp')

# Selected PSUs
for(lyr in c('main', 'over', 'extra'))
{
hexas_save |>
filter(
ET_Index %in’, get(pasteO('selected_', lyr))$ET_Index
) 1>
write_sf(
file.path(
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savePath,
pasteO('PSU-SOBQ_', lyr, '-', fileSuffix, '.shp')

# Save all SSU
for(lyr in c('main', 'over', 'extra'))
{
# SSU main
SSU_lyr <- get(paste0('SSU_all_', 1lyr)) [>
select(-c('nbNeighb', 'nbPropNA', 'sampled'))

coords <- SSU_lyr |>
sf::st_transform(4326) |>
sf::st_coordinates() |[>
as.data.frame()

SSU_lyr |>
mutate (
latitude = coords$Y,
longitude = coords$X
) >
write_sf(
file.path(
savePath,
pasteO('SSU-SOBQ_ALL_', lyr, '-', fileSuffix, '.shp')

# Save selected SSU
for(lyr in c('main', 'over', 'extra'))
{
# SSU main
SSU_lyr <- get(pasteO('SSU_', 1lyr)) [>
select (-c('nbNeighb', 'nbPropNA', 'sampled'))

coords <- SSU_lyr |[>
sf::st_transform(4326) |>
sf::st_coordinates() |[>
as.data.frame()
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SSU_1lyr |>

mutate (
latitude = coords$Y,
longitude = coords$X

) >
write sf(
file.path(
savePath,
pasteO('SSU-SOBQ_selected_', lyr, '-', fileSuffix, '.shp')
)
)

Splited ecoregions

for(eco in eco_sim)
{
# create folder
eco_path <- file.path(
outputFolder,
'byEcoregion',
paste0('ecoregion_', eco)
)

dir.create(eco_path, recursive = TRUE)

# PSU
B e
hexas_save |>

filter(ecoregion == eco) |>
write_sf(
file.path(
eco_path,
pasteO('PSU-SOBQ_eco', eco, '_ALL-', fileSuffix, '.shp')
)
)
for(lyr in c('main', 'over', 'extra'))

{

hexas_save |[>
filter(
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ET_Index %in), subset(
get(pasteO('selected_', 1lyr)),
ecoregion == eco

)$ET_Index

) >
write_sf(

file.path(
eco_path,
paste0(

'PSU-SOBQ_eco',

! 1
-— 3

eco,
lyr, '-',
fileSuffix,
' .shp'

# SSU
e

# Save all SSU

for(lyr in c('main', 'over', 'extra'))
{
# SSU main
SSU_lyr <- get(paste0('SSU_all_', 1lyr)) [>
filter(ecoregion == eco) |[>

select (-c('nbNeighb', 'nbPropNA', 'sampled'))

coords <- SSU_lyr [>
sf::st_transform(4326) |>
sf::st_coordinates() |>
as.data.frame()

SSU_lyr |>
mutate (
latitude = coords$Y,
longitude = coords$X
) 1>
write_sf(
file.path(
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eco_path,

paste0(
'SSU-SO0BQ_eco',
eco,
' ALL_',
lyr, '-',
fileSuffix,
'.shp'
)
)
)
}
# Save selected SSU
for(lyr in c('main', 'over', 'extra'))
{
# SSU main
SSU_lyr <- get(pasteO('SSU_', 1lyr)) [>
filter(ecoregion == eco) |>

select (-c('nbNeighb', 'nbPropNA', 'sampled'))

coords <- SSU_lyr |[>
sf::st_transform(4326) |>
sf::st_coordinates() |>
as.data.frame()

SSU_lyr |>

mutate (
latitude = coords$Y,
longitude = coords$X

) >
write_sf(
file.path(
eco_path,
paste0(
'SSU-S0BQ_eco',
eco,
' _selected_',
lyr, '-',
fileSuffix,
'.shp'
)
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9 Ecoregion summary: habitat

This section provides a summary of the information obtained from the habitat type layer for
each ecoregion (detailed in Chapter 3). The frequency of each habitat type is extracted for
every hexagon within the study area. The initial figure displays the relative frequency of habitat
types for three classes of hexagons categorized based on their habitat inclusion probability.
The first class consists of all hexagons in the ecoregion, while the other two classes only contain
hexagons with the highest inclusion probability according to their quantile distribution.

The subsequent histograms illustrate the distribution of habitat inclusion probability and the
proportion of NA pixels within each hexagon. For the habitat inclusion probability histogram,
the two dashed lines are used to describe the 80% and 95% quantile distribution illustrated in
the first figure. The final figure displays the spatial distribution of habitat inclusion probability
across the ecoregion. It’s worth noting that in most ecoregions, the distribution of habitat
inclusion probability is highly skewed, with only a few hexagons having a very large inclusion
probability. This skewed distribution can make it challenging to visualize the gradient of
inclusion probability. To avoid this issue, we removed the hexagons with the top 0.1% inclusion
probability to improve the clarity of the inclusion probability gradient.
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10 Ecoregion summary: cost

This section provides a summary of the total cost and cost inclusion probability obtained
from the different layers described in Chapter 4. The first figure is the histogram of total
cost distribution across the hexagons of an ecoregion. The second figure illustrates the spatial
distribution of cost inclusion probability within the ecoregion.
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11 Ecoregion summary: historical sites

Historical sites are survey points present in the study area, and a hexagon can contain multiple
historical sites. The first figure illustrates the distribution of the number of historical sites
within a hexagon throughout the ecoregion. The second image displays the spatial distribution
of historical sites in the ecoregion, with each hexagon’s color indicating the number of legacy
sites present. Around each historical sites, two buffers describe the effect of the historical
hexagons on (i) the inclusion probability of neighboring hexagons (dark red) and (ii) the sample
size (light red). While the buffer for adjusting the inclusion probability of neighboring hexagons
is fixed at 10 kilometers, the buffer for adjusting the sample size varies depending on the
ecoregion. For further information, please refer to Chapter 5.
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12 Ecoregion summary: selected hexagons

This section displays the selected PSUs (Primary Sampling Units) for each ecoregion in the
2023 sampling design version. The GRTS method selects one main hexagon (marked in green)
and one over hexagon (blue) for each ecoregion. As the over hexagon is chosen randomly, we
additionally select an extra hexagon (red) next to each main hexagon with the highest inclusion
probability among its neighboring hexagons.
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