

Unifying individual and metapopulation scales with stochastic population models: the effect of climate and competition on tree range limits

WILLIAN VIEIRA*¹ AND DOMINIQUE GRAVEL¹

¹DÉPARTEMENT DE BIOLOGIE, UNIVERSITÉ DE SHERBROOKE, SHERBROOKE, QUÉBEC, CANADA

6 Running title: Unifying scales with stochastic population models

7

Supporting information: Additional supporting information can be found [here](#).

9

10 Acknowledgments: We thank nice people

11

12 Data availability: All the code and data used to reproduce the analysis, figure and manuscript are
13 stored as a research compendium at https://github.com/willyvieira/ms_forest-suitable-probability).

14

15 Funding: This research was supported by the BIOS² NSERC CREATE program.

16

¹⁷ **Conflicts of interest:** The authors declare no conflict of interest.

18

10

Abstract

*Corresponding author: willian.vieira@usherbrooke.ca

21 Despite recent calls to use demographic range models to scale the effect of individual
22 dynamics in setting range limits, there is a growing body of evidence showing that tree species'
23 performance is not correlated with their distribution. In this study, we ask whether the
24 challenge in predicting species distribution from demographic rates stems from overlooking
25 the inherent variability of forest systems and the underlying uncertainty of forest models. We
26 use a stochastic Integral Projection Model to predict species-level intrinsic population growth
27 for 31 eastern North American tree species. We introduce a novel metric for species-level
28 performance we coined local suitable probability, which captures observed spatiotemporal
29 stochasticity in climate and competition while accommodating model uncertainty. Our focus
30 is on investigating how suitable probability changes across the cold-to-hot species range
31 distribution over the mean annual temperature gradient. Our findings reveal a consistent,
32 nearly linear decline in suitable probability from the cold to hot borders across the species.
33 This change in suitable probability towards the orders is primarily driven by climate rather
34 than competition. These results, supported by a novel approach accounting for uncertainty,
35 enhance our understanding of the nuanced interplay between climate and competition
36 across species ranges. We conclude by proposing a novel theory that uses the local suitable
37 probability to establish a link between individual demographic rates and metapopulation
38 dynamics.

39 **Keywords:** Integral Projection Models, Species distribution, Individual variability, Environmental
40 stochasticity, Forest demography

41 1 Introduction

42 Climate warming poses a significant challenge for several species, particularly for trees that struggle
43 to follow temperature warming and moving ranges (Sittaro et al. 2017). It is imperative to untangle
44 the mechanisms governing their range limits to forecast how they will respond to climate change. The
45 niche theory predicts that a species will be present in suitable environmental conditions that allow the

46 species to have a positive growth rate (Hutchinson 1957). From this theory, we can define the geographic
47 distribution of a species as a manifestation of individual demographic rates, such as growth, survival,
48 and recruitment (Holt 2009). By assuming these demographic rates change with the environment, we
49 can predict a species' range limits based on its individuals' performance (Maguire Jr 1973, Holt 2009).

50 Biotic interaction is undoubtedly an essential driver of demographic rates and, thereby, a potential
51 driver of range limits. A recent theoretical framework based on coexistence theory has been proposed to
52 assess how biotic interactions can scale up to affect range limits (Godsoe et al. 2017). Formally, this
53 framework evaluates the intrinsic population growth rate when the focal species is rare (Chesson 2000),
54 both in scenarios where there is no competition (fundamental niche) and when competitive species reach
55 equilibrium (realized niche). Numerous studies have explored the influence of climate and competition
56 on the distribution of forest trees across their ranges. For instance, Ettinger and HilleRisLambers
57 (2017) observed in field experiments that neighboring competition constrained individual performance
58 within the range but facilitated better performance outside the range. Using a dynamic forest model,
59 Scherrer et al. (2020) showed how slow demographic rates and negative competition reduce the uphill
60 migration rate of 16 tree species. Despite this evidence, the application of this framework to predict the
61 geographic distribution of species based on demographic rates often reveals weak correlations between
62 the performance of tree species and their distribution (McGill 2012, Csergo et al. 2017, Bohner and
63 Diez 2020, Le Squin et al. 2021, Midolo et al. 2021, Guyennon et al. 2023, Thuiller et al. 2014).

64 One possible explanation for such discrepancy between demographic rates and species distribution is
65 the common practice of assessing performance under average conditions and pointwise estimations,
66 neglecting the associated uncertainty in these estimates. In ecological models, the uncertainty in
67 estimation arises from three distinct sources. The first source involves measurement errors, a factor often
68 neglected in ecological models (Damgaard 2020). The second is process uncertainty linked to model
69 (mis)specification (Harwood and Stokes 2003), determined by all variation that is not captured by the
70 model covariates. Finally, even with a well-defined model and precise data, models must also consider
71 parameter uncertainty due to individual variability (Cressie et al. 2009, Shoemaker et al. 2020).

72 Beyond data and model uncertainty, variability in demographic rates and subsequently in the population
73 growth rate (λ) arises from two primary sources (van Daalen and Caswell 2020). The first is attributed

74 to demographic and environmental stochasticity, where individuals exposed to identical conditions may
75 exhibit different responses simply by chance (Caswell 2009). The second source of variability arises
76 from heterogeneity encountered at various scales. These differences can manifest between individual
77 stages that motivated the development of structured population models (Lewis 1942, Leslie 1945),
78 and can promote high species diversity in forest trees (Clark 2010). Another source of heterogeneity
79 arises from large-scale differences in neighboring patches, often described by the metapopulation theory
80 (Levins 1969). This theory posits that the dynamics of occupied and empty patches in a landscape
81 are driven by colonization and extinction processes. Building on this theory, Talluto et al. (2017)
82 used patch variability to derive colonization and extinction rates of eastern North American trees,
83 revealing their distribution to be out of equilibrium with climate. Therefore, while this result advances
84 our understanding of the mechanisms governing large-scale tree distributions, there remains a need to
85 reconcile it with local demographic dynamics, given that colonization and extinction processes ultimately
86 manifest from demographic rates.

87 Theory predicts that the uncertainty arising from stochastic and heterogenous processes may lead to
88 divergent outcomes in λ . Demographic and environmental stochasticity may increase the uncertainty in
89 λ , consequently increasing the extinction risk, particularly for populations with low performance or low
90 density (Holt et al. 2005, Gravel et al. 2011). For instance, demographic stochasticity increased the
91 extinction risk of European forest trees at the hot edge of their distribution (Guyennon et al. 2023). On
92 the other hand, spatial heterogeneity has been described as a buffering process against the stochasticity
93 in demographic rates, thereby increasing population persistence (Milles et al. 2023). This is particularly
94 relevant in nonlinear models, where higher demographic and environmental stochasticity can increase
95 the difference in population growth rate compared to the average expectations (Koops et al. 2009).
96 Furthermore, demographic and environmental stochasticity influence abundance variation, indirectly
97 impacting λ through density-dependence (May et al. 1978, Terry et al. 2022). A comprehensive
98 understanding of the response of forest trees to climate change requires incorporating the multiple
99 sources of variability arising from spatio-temporal variation and parameter uncertainty.

100 Here, we use a stochastic Integral Projection Model (IPM) to predict species-level intrinsic population
101 growth (λ) for 31 eastern North American tree species. The IPM integrates the growth, survival, and
102 recruitment demographic rates, which vary in response to climate and competition. By fitting each

103 demographic rate using non-linear hierarchical Bayesian models, we capture parameter uncertainty
104 at both the individual and local population scales. Additionally, our model naturally accommodates
105 observed spatio-temporal stochasticity in climate and competition. Then, rather than ignoring these
106 sources of variability, we embrace them into λ by defining species performance through a probabilistic
107 framework. Specifically, we introduce a novel metric called **local suitable probability**, derived from
108 the average population growth rate and its associated variability. This metric determines the probability
109 of a positive population growth rate for a species under specific climate and competition conditions.

110 In our analysis, we first used the IPM to predict species-specific λ at the plot level under two conditions:
111 without (fundamental niche) and with (realized niche) heterospecific competition. We replicated this
112 calculation 100 times across all observed plots from the same species to assess the variability of λ
113 arising from both spatio-temporal stochasticity in the climate and competition and model uncertainty.
114 As this variable λ changes across space, we used these observations to model how the species' local
115 suitable probability changes across the mean annual temperature. Specifically, we ask how climate and
116 competition affect each species' local suitable probability. Then, we investigated how a species' local
117 suitable probability changes from the center of its distribution toward the cold and hot borders. Finally,
118 we disentangle the relative impacts of climate and competition in changing suitable probability from the
119 center to the borders. We conclude by discussing a novel theory that uses the local suitable probability
120 to establish a link between individual demographic rates and metapopulation dynamics.

121 2 Methods

122 2.1 Population model, demographic components, and uncertainty 123 structure

124 We use an Integral Projection Model (IPM) to predict the intrinsic population growth rate (λ) as
125 a function of climate and competition. An IPM is a powerful modeling approach that allows a full
126 representation of all sources of variability in demography. The IPM serves as a mathematical formulation
127 describing the dynamics of a continuous trait distribution (z) within a population over discrete time
128 steps:

$$n(z', t + 1) = \int_L^U K(z', z, X, \theta) n(z, t) dz \quad (1)$$

129 In our case, the trait z is defined as the tree's diameter at breast height (dbh), constrained between the
 130 limits L and U . The continuous distribution $n(\cdot)$ of dbh z of a population at time t transitions to the
 131 next time step using a projection kernel (K). The kernel K , with parameters θ and covariates X that
 132 are time dependent, comprises three demographic submodels:

$$K(z', z, \theta) = [Growth(z', z, X, \theta) \times Survival(z, X, \theta)] + Recruitment(z, X, \theta) \quad (2)$$

133 The growth model assesses the probability of an individual of size z at time t transitioning to size z' at
 134 time $t + 1$. The survival model determines the probability of an individual with size z at time t surviving
 135 to the next time step. Lastly, the recruitment model determines the number of new individuals entering
 136 the population at each time step as a function of total density z . The kernel K has the same function
 137 of the population growth rate r in a population model, where multiplying the population distribution
 138 $n(z, t)$ with K gives the population distribution at the next time step $n(z', t + 1)$. Its advantage in
 139 propagating uncertainty is that, instead of having a matrix with fixed parameters determining the
 140 transition rate of population individuals over time, it uses a probability distribution with uncertainty
 141 derived from the demographic models to project individuals over time.

142 With the defined K , we can estimate the intrinsic population growth rate for a determined set of
 143 conditions from the covariates X and sampled parameters from the posterior distribution θ . Specifically,
 144 we discretize the continuous kernel K using the mid-point rule (Ellner et al. 2016) and estimate the
 145 intrinsic population growth rate using the dominant eigenvalue of the discretized K . This approach is a
 146 local approximation of the population growth rate at the initial time steps.

147 A detailed description of the data and model development is available in Chapter 2. In summary, we
 148 evaluated non-linear statistical models to formulate the growth, survival, and recruitment components
 149 of the IPM, along with their uncertainty. Each demographic sub-model varies as a function of the
 150 mean annual temperature, mean annual precipitation, and stand basal area of larger individuals. Each

model's parameters (θ) are species-specific, as each model is fitted separately for each species. Both climate variables influence each demographic model through an unimodal link function, where each model exhibits an optimal climate and niche breadth for temperature and precipitation. Additionally, density dependence is integrated based on the plot's total basal area of larger individuals. Stand density affects growth and survival through a linear model, in which two parameters determine the strength of interaction from conspecific and heterospecific (all species combined) competition. For the recruitment model, the annual ingrowth rate is modulated by conspecific stand basal area, using an unimodal function to account for both the positive effect of seed source and the negative effect of conspecific competition. Furthermore, the annual survival rate of potential ingrowth individuals decreases linearly with the stand density of heterospecific individuals. Finally, the intercept of each growth, survival, and recruitment model incorporates plot-level random effects to control for the variance shared within the plot-year observations.

We use two open inventory datasets from eastern North America: the Forest Inventory and Analysis (FIA) dataset in the United States (O'Connell et al. 2007) and the permanent plots of forest inventory program for Québec (Ministère des Ressources Naturelles 2016). These inventories, with multiple individual measurements over time and space, allowed us to use the transition information between measurement years for predicting growth, survival, and recruitment rates. We selected the 31 most abundant species, comprising 9 conifer species and 22 hardwood species, well-dispersed across shade tolerance and successional status (Supplementary Material 1). These species are well distributed across the eastern North American gradient and the sampling area covers cold and hot range limits for most species.

2.2 Extracting local suitability probability

We estimate λ at the local population scale, specifically at the plot level in our study. Within a given geographic location, such as a specific latitude where several plots are located, the variance of λ among those plots arises from spatio-temporal variations in both climate and competition covariates. For instance, climate stochasticity introduces noise in annual temperature and precipitation, leading to environmental variation. Similarly, even with identical climate conditions, two locations can exhibit different community abundance and composition, resulting in variability in the strength of competition.

179 Beyond these spatio-temporal environmentally-induced variations, λ can still vary due to the other
180 sources of uncertainty discussed above.

181 We track demographic model uncertainty at two complementary scales: individual and plot levels. At
182 the individual level, without plot random effects, two plots with the same climate and competition
183 conditions may have different λ values due to the uncertainty in the demographic growth, survival, and
184 recruitment sub-models. Similarly, with the same environmental conditions and averaged parameter
185 values (eliminating demographic uncertainty at the individual level), two plots can still yield different
186 λ values due to the spatial uncertainty of each demographic model due to the plot random effects.
187 Therefore, variability in the population growth rate can arise from spatio-temporal variations in both
188 the environment and the parameters.

189 Given these different sources of variability in λ , we define the suitable probability as the area under the
190 distribution for $\lambda \geq 1$. To estimate this, we first determine the cumulative distribution function, $F(x)$,
191 from the generic probability density function, $\lambda = f(t)$, as follows:

$$F_\lambda(x) = P(\lambda \leq x) = \int_{-\infty}^1 f(t)dt \quad (3)$$

192 This function represents the cumulative distribution from $-\infty$ to x . Subsequently, we define the suitable
193 probability (Λ) as the complement of the cumulative distribution function for $x = 1$:

$$\Lambda = 1 - F_\lambda(1) \quad (4)$$

194 2.3 Modeling suitable probability

195 We can evaluate the suitable probability of a species at various scales, ranging from a single local
196 plot up to several plots in a region. At the plot level, sources of variability in λ stem from parameter
197 uncertainty, individual heterogeneity, and temporal variability in climate and competition. When
198 considering multiple plots simultaneously, we can additionally account for spatial variability in climate
199 and competition, along with spatial uncertainty in plot-level parameters.

200 Apart from parameter uncertainty at the individual level, all other sources of variability exhibit spatial
201 dependence. This implies that environmental variability (from climate, competition, or both) and
202 parameter uncertainty at the plot level can vary based on their spatial location. For instance, plots at
203 the border of the species distribution may experience more temperature variability than those at the
204 center. Additionally, plot-level parameter uncertainty can be spatially clustered, capturing potential
205 features of demographic variability beyond the climatic and competition covariates, such as historical
206 factors or local edaphic conditions.

207 Given that variability can be spatially dependent, we can model how suitable probability changes across
208 the species' range distribution, considering both fixed climate and competition effects and the underlying
209 spatio-temporal variability. We are particularly interested in how suitable probability changes from the
210 center toward the cold and hot ranges. For that, we categorized all species' plot-year observations based
211 on the gradient of mean annual temperature (MAT), divided into cold and hot ranges using the MAT
212 centroid among all plots for the species ($\frac{\max(MAT)+\min(MAT)}{2}$). For instance, if a species is observed
213 within the 4-10°C gradient of MAT, the plots with MAT below 7°C are classified as cold, while the
214 others are classified as hot. We chose to use MAT instead of latitude because we are interested in the
215 species' climatic niche, although the two variables are highly correlated.

216 We assessed suitable probability separately for the cold and hot ranges, employing a linear model to
217 determine the relationship between λ and MAT. The spatio-temporal variability of λ arising from
218 environmental stochasticity and parameter uncertainty influences the variance of the linear model. As
219 this variance may change depending on the range position, we introduce a submodel for the variance of
220 the linear model to be dependent on MAT. To accommodate potential asymmetry in this variance, we
221 use a Skew Normal Distribution (SN) incorporating an additional parameter (α) that can introduce
222 right or left-skewed tails to the variance:

$$\begin{aligned} \log(\lambda) &\sim SN(\xi, \omega, \alpha) \\ \xi &= \beta_{1,\xi} \times MAT + \beta_{0,\xi} \\ \omega &= e^{\beta_{1,\omega} \times MAT + \beta_{0,\omega}} \end{aligned} \tag{5}$$

223 Here, ξ is the location parameter or the λ average, and ω is the scale representing the variance around
224 the mean.

225 **2.3.1 Simulations**

226 We computed λ for each species based on the plot-year observations in the dataset, considering both
227 environmentally induced variability and parameter uncertainty. For every observed species-plot-year
228 combination, we incorporated temporal stochasticity in climate conditions by using the mean and
229 standard deviation of mean annual temperature and precipitation calculated from the years between
230 measurements. For instance, in the case of a plot observed twice, we calculated λ for the second
231 observation with climate conditions drawn randomly from a normal distribution with mean and standard
232 deviation extracted from plot specific climate observations for each year within the time interval.
233 Similarly, temporal stochasticity in competition arises from variation in abundance and composition
234 between measured years. By iteratively performing this calculation, drawing parameter values randomly
235 from the posterior distribution, we introduced demographic uncertainty at the individual level. For each
236 species-plot-year measurement, we replicated the calculation of λ 100 times. By applying this approach
237 across all plots, we naturally incorporate spatial variation in climate and competition conditions and
238 spatial uncertainty in plot-level parameters.

239 For each species-plot-year-replication combination, we calculated λ under two simulated conditions.
240 The first scenario excludes competition in order to evaluate the fundamental niche, with heterospecific
241 competition set at zero and conspecific total population size (N) set at 0.1. This simulation is used to
242 assess the fundamental niche. The second scenario is used to evaluate the invasion growth rate with
243 residents (the realized niche), with an evaluation of the population growth rate when the focal species
244 is rare ($N = 0.1$) and heterospecific competition is set to the observed abundance of the competitive
245 species. This condition simulated the population growth rate under the realized niche.

246 We then fitted a linear model of λ for each species-plot-year-replication as a function of the mean annual
247 temperature gradient. Species-specific linear models were evaluated for the hot and cold ranges using
248 the Hamiltonian Monte Carlo (HMC) algorithm via the Stan software (version 2.30.1 Team and Others
249 2022) and the `cmdstanr` R package (version 0.5.3 Gabry et al. 2023). We conducted 1000 iterations
250 for the warm-up and 1000 iterations for the sampling phase for each of the four chains, resulting in 4000

251 posterior samples (excluding the warm-up). We used a sample of 5000 plots for each species to fit the
252 model. This sample was necessary only for 6 out of the 31 species.

253 We leveraged the posterior distribution to estimate the suitable probability of a species for any value
254 of MAT under fundamental or realized niches for the cold and hot ranges. Specifically, we estimated
255 suitable probability under four different MAT conditions encountered by the species: at the border and
256 the center of each cold and hot range. We defined the border of the cold range as the minimum observed
257 MAT for the focal species in the dataset, while the hot range was defined as the maximum observed
258 MAT. The center location is defined as the centroid of MAT for the focal species. Although the center
259 location has the same MAT for the cold and hot ranges, both are retained because the model is fitted
260 separately for the cold and hot ranges. Finally, we estimated suitable probability for each location under
261 no competition (fundamental niche) and heterospecific competition (realized niche) conditions, using
262 the empirical cumulative distribution function over 1000 predictive draws.

263 The code for the computation of each plot-year λ is available at [https://github.com/willvieira/fo](https://github.com/willvieira/forest-IPM/tree/master/simulations/lambda_plot)
264 [rest-IPM/tree/master/simulations/lambda_plot](https://github.com/willvieira/forest-IPM/tree/master/simulations/lambda_plot), and the code to model the linear model is at
265 https://github.com/willvieira/forest-IPM/tree/master/simulations/model_lambdaPlot/.

266

3 Results

267

3.0.1 Model fit

268 We first analyzed how the local population growth rate (λ) and its variability change across the cold
269 and hot ranges (Equation 5). An example is provided at Figure 1 with the observed distribution of
270 λ and the fit of the underlying model on the mean annual temperature gradient for balsam fir, *Abies*
271 *balsamea*. Each point represents a plot-year-replication encompassing the complete spatio-temporal
272 sources of variability arising from the stochastic environment and parameter uncertainty. The black line
273 represents the fitted model of how λ changes with MAT, and the envelopes depict the 90th quantiles
274 of model distribution. From this uncertainty, we can deduce the suitable probability. This example
275 shows that the mean and variance of λ decrease towards the cold border, while it does not vary much
276 towards the hot border. By comparing the model under heterospecific competition with that without

277 competition for the cold range, we observed that while their average is similar, the uncertainty of the
 278 model under heterospecific competition shifted downwards (Figure 1, bottom left).

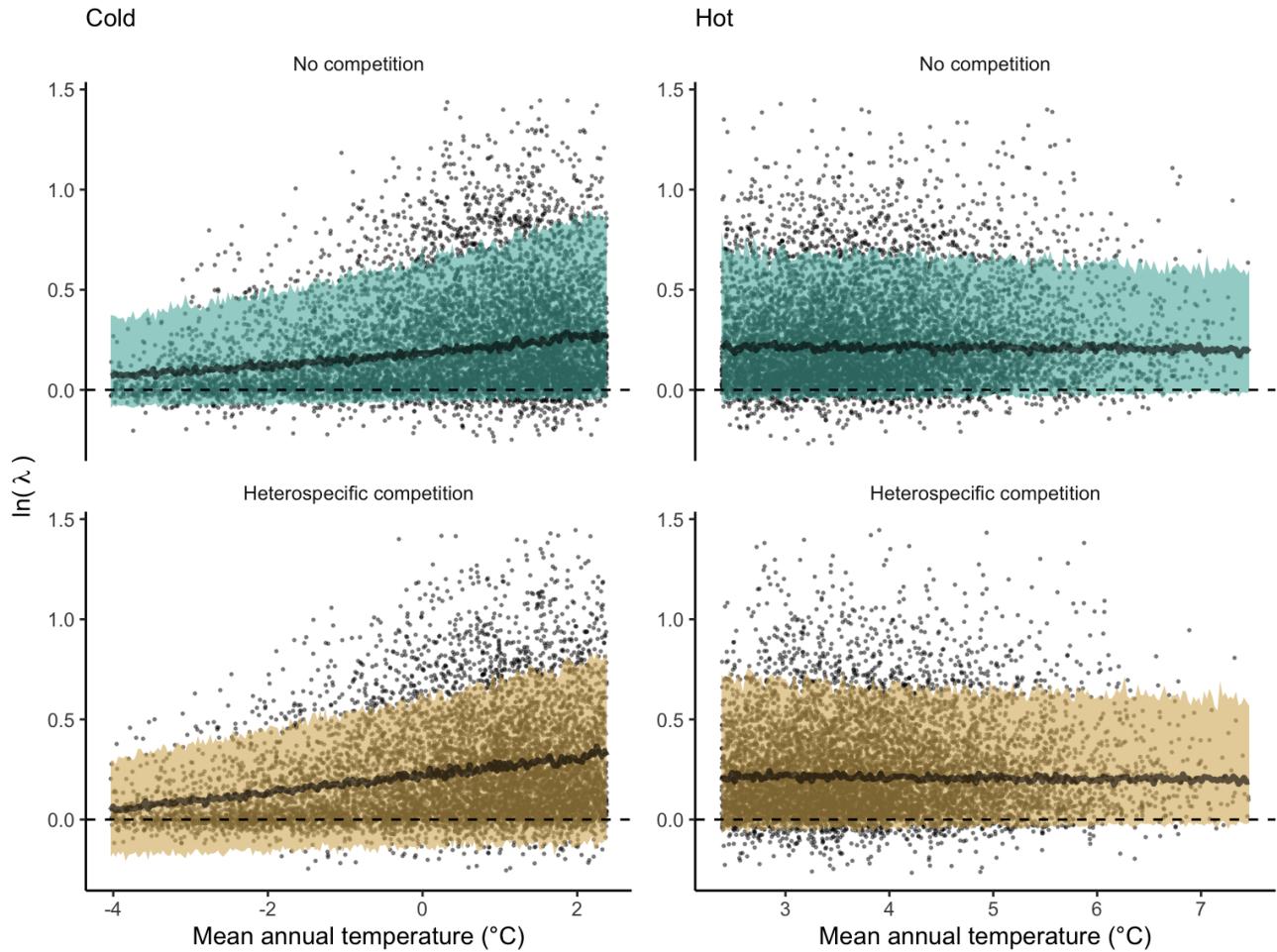


Figure 1: Distribution of stochastic population growth rate (λ) for *Abies balsamea* over the mean annual temperature gradient for different conditions. Species' population are split into cold (left panels) and hot (right panels) ranges under no competition (fundamental niche) and heterospecific competition (realized niche). The dots represent λ over the plot-year-replication combinations. The model's average line and 90% prediction intervals are estimated using 500 draws from the posterior distribution.

279 We then investigated the local suitability probability using the empirical cumulative distribution approach
 280 (Equation 4) from the linear model predictions. The Figure 2 shows the suitable probability expected
 281 over the mean annual temperature of the same species. We observed that the local suitability probability
 282 was reduced towards the cold border, with a stronger reduction under heterospecific competition (yellow
 283 curve). We can also observe that the decrease in suitable probability towards the border is nonlinear,
 284 becoming more substantial for heterospecific competition than for the no-competition condition.

285 The model fit and the estimation of suitable probability across the temperature gradient for all species
 286 are presented in Supplementary Material 2. We observed for most species a decrease of the climate
 287 effect at one border while the other remained unchanged. Additionally, a few species displayed a clear
 288 linear pattern of decreasing suitable probability from the cold to the hot border, with only one species
 289 (*Betula papyrifera*) having a decrease at both borders. Conversely, under the competition effect, most
 290 species exhibited a decrease in suitable probability at the hot border and an increase at the cold border,
 291 indicating a linear rise in the impact of competition from the cold to the hot border of the distribution.

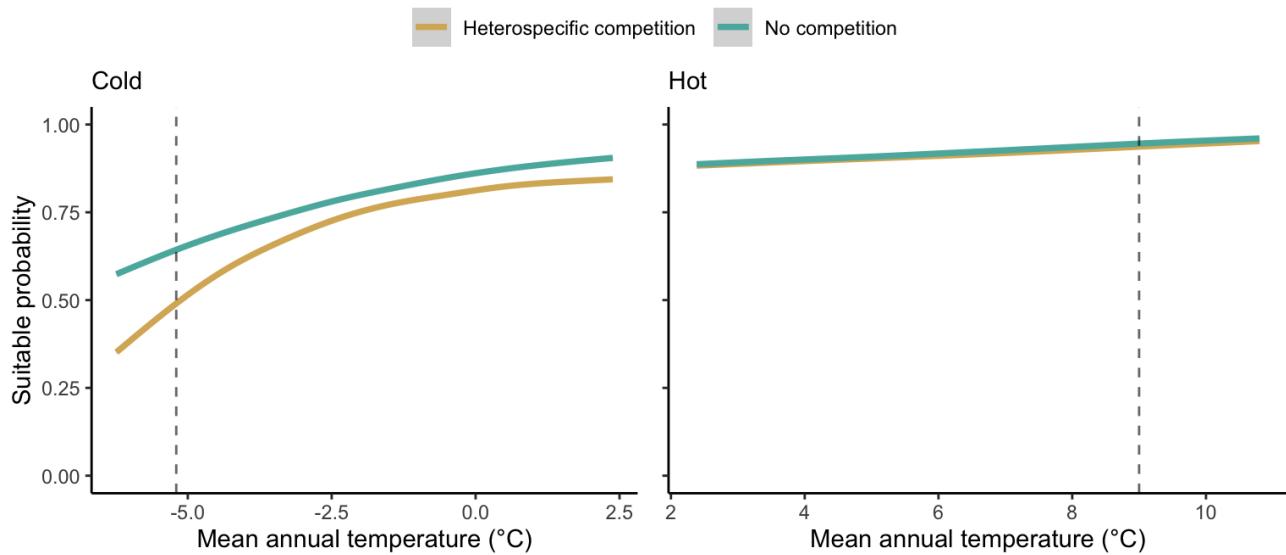


Figure 2: Suitable probability of *Abies balsamea* over the mean annual temperature gradient for cold and hot ranges under no competition (green) and heterospecific (yellow). The vertical dotted line represents the range limits of the MAT observed in the dataset.

292 **3.0.2 Effect of climate and competition on suitable probability for the center and
 293 border distributions**

294 We investigated the effect of climate and competition on the suitable probability at the border and
 295 center of the temperature range distribution for all species. Because the border and center positions are
 296 relative to each species, we could not represent the continuous trend in suitable probability across the
 297 MAT for all 31 species together. Instead, we extracted the local suitable probability with and without
 298 heterospecific competition for four locations across the MAT gradient (Figure 3). Overall, suitable
 299 probability was high among the species, with an average of 0.78. Among the four locations, species
 300 presented a lower suitable probability at the border of the hot range, with an average of 0.67. Across the

301 temperature range, there is a monotonic decrease in suitable probability from the cold border toward
 302 the hot border.

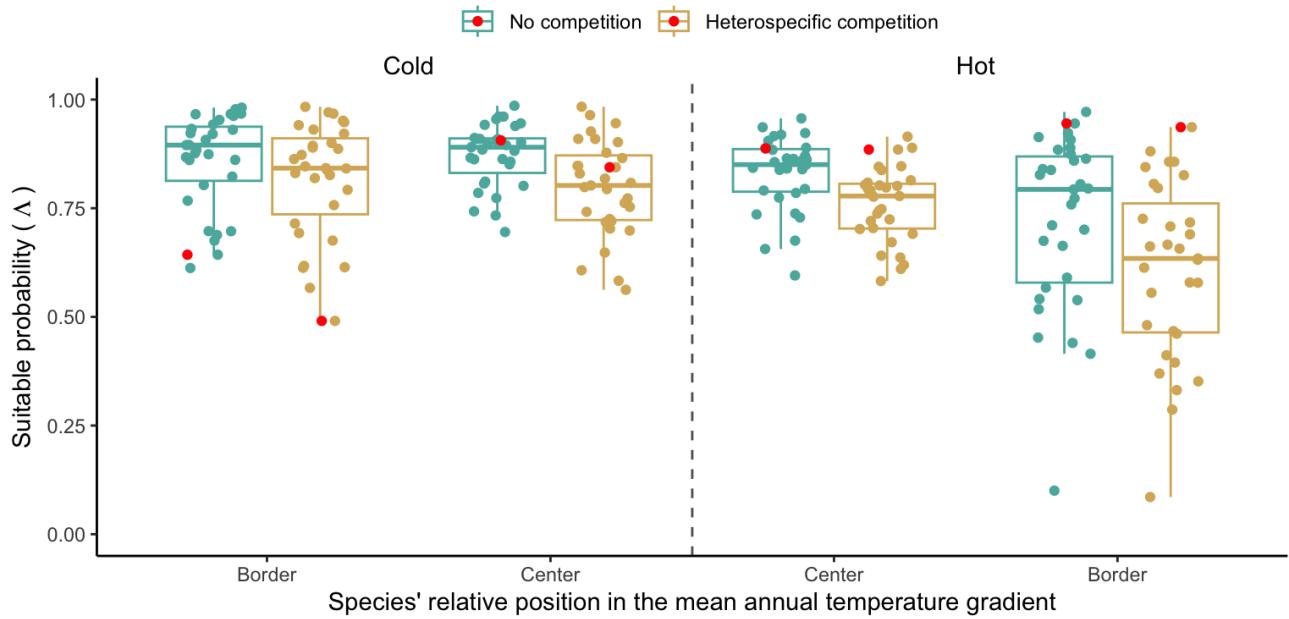


Figure 3: Estimated suitable probability for the 31 forest species across the center and border of the cold and hot ranges. The x-axis represents the mean annual temperature gradient similar to Figure 2, but is discretized at the border and center limits relative to each species. We highlighted the balsam fir species in red. Note that we omitted the parameter uncertainty of each species in this figure to avoid overlap and increase clarity.

303 We further disentangle the influence of competition from that of climate by calculating the difference
 304 between suitable probability under heterospecific competition and without competition. A negative
 305 difference signifies competition reduces suitable probability, while positive differences indicate an increase.
 306 Across the four climate locations, heterospecific competition consistently reduced suitable probability
 307 for most species, with the magnitude of reduction intensifying from the cold to the hot border (Figure
 308 S1). This suggests that the decline in suitable probability observed from the cold to the hot border
 309 (Figure 3) results from the combined effect of climate and competition.

310 **3.0.3 Suitable probability change from center to border**

311 We investigated the relative effect of climate and competition on changing suitable probability from the
 312 center to the border of the species distribution (Figure 4). A positive relative difference indicates an
 313 increase in suitable probability from the center towards the border, while a negative difference indicates

314 a decrease. Most species exhibited a decrease in suitable probability at the hot border relative to the
 315 center. Alternatively, most species showed a reduction in the effect of competition toward the cold
 316 border. However, the climate effect in the cold range was more variable, with some species experiencing
 317 an increase and others a decrease in suitable probability (Figure S2). Overall, the relative difference in
 318 suitable probability from the center toward the cold and hot borders was more influenced by climate
 319 rather than competition.

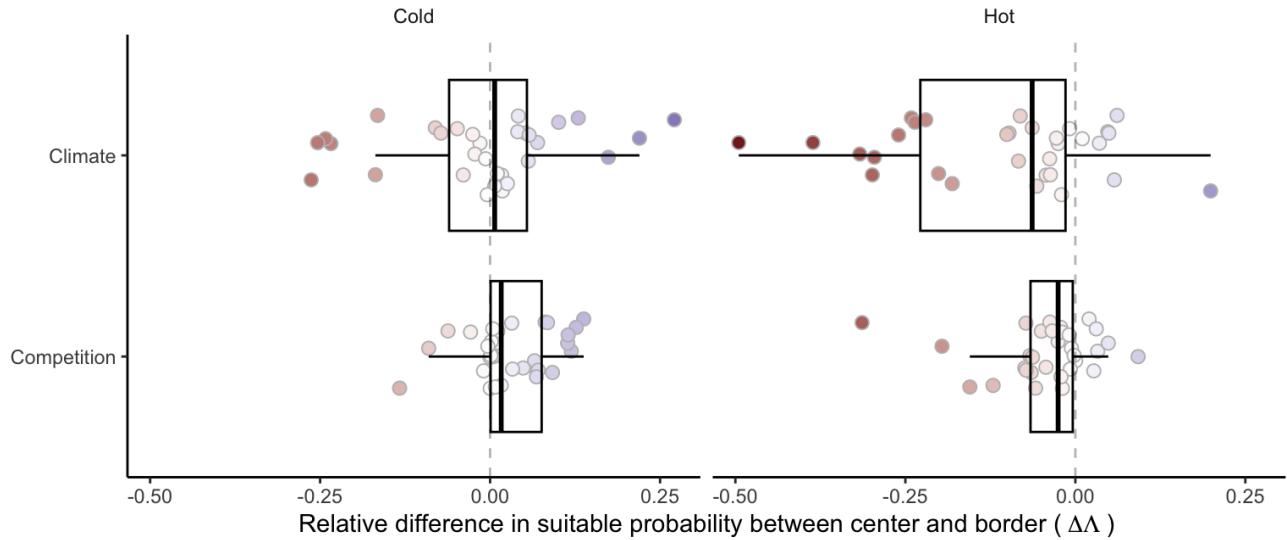


Figure 4: Difference in suitable probability for climate and competition effects over the cold and hot ranges. Negative values denote a decrease in species suitable probability from the center towards the distribution border, while positive values indicate an increase. Specifically, a negative value for climate at the hot (or cold) range signifies a reduction in suitable probability as temperature rises (or falls) towards the border. Boxplots determine the 25-75 quantile distribution among the species.

320 4 Discussion

321 Understanding the mechanisms shaping species distribution is imperative to face ongoing global changes.
 322 We acknowledged and integrated various sources of variability in the population growth rate of forest
 323 trees, contributing to an improved understanding of forest dynamics in an uncertain world. Introducing
 324 a novel metric, we quantified the relative impacts of climate and competition on the change in suitable
 325 probability across species distributions. Our findings revealed a nearly linear reduction in suitable
 326 probability from the cold to hot borders. Notably, the predominant influence on the relative difference in
 327 suitable probability from the center toward the border was attributed to climate rather than competition.

328 These results, supported by a novel approach accounting for uncertainty, enhance our understanding of
329 the nuanced interplay between climate and competition across species ranges.

330 The suitable probability was high across all species and range locations, with only around 5% of all
331 species-location combinations having a suitable probability below the 0.5 threshold. This is primarily
332 attributed to most species exhibiting a high positive population growth rate across their current
333 range distribution. Additionally, the spatio-temporal variability in the environment and the parameter
334 uncertainty in the plot may contribute to the elevated average population growth rate due to nonlinear
335 averaging. This aligns with theoretical (Schreiber and Lloyd-Smith 2009) and empirical (Crone 2016)
336 studies suggesting that spatial heterogeneity should increase the population growth rate.

337 Competition significantly reduces local suitability across all range locations, with a stronger and more
338 consistent effect at the cold border, contributing to the ongoing debate surrounding its significance
339 in setting range limits. Despite several studies emphasizing the effect of competition compared to
340 climate on the demographic rates of forest trees (Zhang et al. 2015, Käber et al. 2021, Le Squin et al.
341 2021), debates persist regarding whether this effect at the local scale translates to the biogeographic
342 distribution of species (Soberón 2007, Copenhaver-Parry et al. 2017). Our findings support the Godsoe
343 et al. (2017) hypothesis and a growing body of evidence (Scherrer et al. 2020, Shi et al. 2020, Paquette
344 and Hargreaves 2021, Lyu and Alexander 2022) showing that the effect of competition on the intrinsic
345 population growth rate can indeed contribute to range limits.

346 The decline in suitable probability from the cold to the hot border suggests a predominantly linear, rather
347 than unimodal, relationship with temperature for most species (Figure S3). This result is consistent
348 with reduced population growth rates in North American (Le Squin et al. 2021, Schultz et al. 2022) and
349 European (Guyennon et al. 2023) forest trees, except for the contrasting pattern observation by Purves
350 (2009). The higher suitable probability in the cold range compared to the hot range could be attributed
351 to multiple factors. First, species may still follow their climate niche post the last glaciation, explaining
352 why the current cold range limit does not align with the expected niche distribution (Svenning and
353 Skov 2007), potentially leading to a colonization debt (Talluto et al. 2017). Notably, four of the six
354 species exhibiting a significant decrease in suitable probability from the center toward the cold range
355 were already at the extreme cold observed in the dataset (Figure S4).

356 Our model may however overlook crucial drivers of species performance, despite capturing a substantial
357 amount of variation from parameter uncertainty at the plot level. Factors such as the impact of extreme
358 temperature and precipitation on phenology can influence tree range limits (Morin et al. 2007). Beyond
359 covariates and plot-level uncertainty, incorporating temporal uncertainty at the plot level, accounting
360 for spatio-temporal covariance, could likely capture additional sources of variation in demographic rates.
361 While our approach considers temporal stochasticity in climate and competition, which affect species
362 range size (Holt et al. 2022), there remains temporal variation in demographic rates beyond these
363 covariates. This variability, possibly captured with random effects at the plot level, can influence range
364 limits based on the degree of temporal autocorrelation and its relationship with the range (Benning et
365 al. 2022). For instance, an empirical study on perennial herbaceous species demonstrated that temporal
366 environmental stochasticity reduced the population growth rate relative to the average (Crone 2016).
367 In our study, this temporal variability is particularly relevant for survival (due to disturbance) and
368 recruitment (due to phenology) rates because, in addition to having high temporal variability (Clark et
369 al. 1999, de Souza Leite et al. 2023), they represent the most significant drivers of population growth
370 rate (Chapter 2).

371 The effect of competition, similar to climate, increased from the center towards the border of the hot
372 range, contrary to Kunstler et al. (2021), who found no difference in the competition effect between the
373 center and border of the species. Additionally, our results deviate from the Species Interactions-Abiotic
374 Stress Hypothesis, predicting a stronger competition effect in less stressful climate conditions (Louthan
375 et al. 2015). When considering the relative position of the species across the temperature gradient,
376 only the effect of climate at the cold range changed with temperature. This indicates that most species
377 have a similar or higher suitable probability at the border of the cold range compared to their center
378 distribution. We further tested whether the species' range size affects the relative difference in suitable
379 probability; while the absolute values change, the pattern among the species remains unchanged.

380 The climate gradient of temperature had a more significant effect than competition in changing the
381 suitable probability of forest trees. This means that mean annual temperature, along with all latent
382 variables, better explains how suitable probability changes across the temperature range. The choice of
383 using only mean annual temperature as an explanatory variable for the variance of λ can be improved.
384 For instance, the model could be built accounting for mean annual temperature and precipitation to

385 predict the complete two-dimensional distribution of the species' climate niche. Plot random effects
386 could be further used to account for the nestedness of the data design, allowing the proper separation of
387 the total variance of the metamodel into variance arising from individual- and plot-level demographic
388 uncertainty. While we have assumed climate variability as independent and identically distributed
389 random variables, this assumption can be relaxed to include temporal autocorrelation. Autocorrelated
390 environmental fluctuation can significantly change a species' range limits due to nonlinear averaging
391 (Benning et al. 2022, Holt et al. 2022). Lastly, although coexistence theory assumes the abundance of
392 competitors to be at equilibrium (Chesson 2000), testing this assumption remains practically impossible.

393 Despite the many ways of improving our study, there is a growing body of evidence indicating a mismatch
394 between performance and occurrence (McGill 2012, Csergo et al. 2017, Bohner and Diez 2020, Le Squin
395 et al. 2021, Midolo et al. 2021, Guyennon et al. 2023, Thuiller et al. 2014). Our approach can better
396 capture the nuanced effect of climate and competition along with the spatio-temporal variation in λ ,
397 yet it was not enough to fully predict tree range limits. Since species distribution is influenced by
398 processes at multiple scales (McGill 2010, Heffernan et al. 2014), it is challenging to rely on a single
399 individual-level performance metric to predict it all (Evans et al. 2016). For instance, dispersion plays a
400 crucial role in changing species distribution at larger spatial scales, either reducing its extent due to
401 limited dispersal or increasing it through source-sink dynamics (Pulliam 2000). We propose that our
402 novel metric, local suitable probability, can be a key unifying factor linking local and landscape scales.

403 Forest trees exhibit variation in their frequency of occurrence across distribution gradients, yet their
404 relative abundance remains consistent when present (Canham and Thomas 2010). Such observation
405 implies that assessing forest distribution should focus on colonization and extinction patch dynamics
406 rather than local performance (Canham and Murphy 2017). However, instead of restricting models
407 to either local or large scales, we propose using the local suitable probability to reconcile the local
408 demographic dynamics with the metapopulation theory. Colonization and extinction processes, as
409 described by metapopulation theory (Levins 1969), are well-suited for describing the mosaic of forest
410 successional stages at the landscape scale resulting from natural disturbances and succession. However,
411 an implicit assumption is that unoccupied patches are necessarily available for colonization. We relax this
412 assumption and quantify patch availability using the local suitable probability metric (Λ). Considering an
413 ensemble of patches (p) where individuals can arrive and establish in empty patches through colonization

414 (α), and occupied patches can become empty through extinction (ε), the integrated metapopulation
415 model becomes:

$$\frac{dp}{dt} = \alpha p(\Lambda - p) - \varepsilon p \quad (6)$$

416 With this formulation, rather than having $1 - p$ available patches for colonization, we have $\Lambda - p$.
417 Therefore, when λ and its variability are high, the local suitable probability equals 1, indicating that all
418 non-occupied patches are available. Conversely, as the local suitable probability decreases, the proportion
419 of non-occupied patches available for colonization is reduced. This integrative approach allows one to
420 account for both the local (e.g. competition and climate) and landscape (e.g. fire disturbances and
421 dispersal) drivers of forest dynamics when assessing tree distribution.

422 References

423 Benning, J. W., R. A. Hufbauer, and C. Weiss-Lehman. 2022. Increasing temporal variance leads to
424 stable species range limits. *Proceedings of the Royal Society B: Biological Sciences* 289.

425 Bohner, T., and J. Diez. 2020. Extensive mismatches between species distributions and performance
426 and their relationship to functional traits. *Ecology Letters* 23:33–44.

427 Canham, C. D., and L. Murphy. 2017. The demography of tree species response to climate: Sapling
428 and canopy tree survival. *Ecosphere* 8.

429 Canham, C. D., and R. Q. Thomas. 2010. Frequency, not relative abundance, of temperate tree species
430 varies along climate gradients in eastern North America. *Ecology* 91:3433–3440.

431 Caswell, H. 2009. Stage, age and individual stochasticity in demography. *Oikos* 118:1763–1782.

432 Chesson, P. 2000. Mechanisms of maintenance of species diversity. *Annu. Rev. Ecol. Syst.* 31:343–66.

433 Clark, J. S. 2010. Individuals and the variation needed for high species diversity in forest trees. *Science*
434 327:1129–1132.

435 Clark, J. S., B. Beckage, P. Camill, B. Cleveland, J. HilleRisLambers, J. Lichter, J. McLachlan, J.
436 Mohan, and P. Wyckoff. 1999. Interpreting recruitment limitation in forests. *American Journal of*
437 *Botany* 86:1–16.

438 Copenhaver-Parry, P. E., B. N. Shuman, and D. B. Tinker. 2017. Toward an improved conceptual
439 understanding of North American tree species distributions. *Ecosphere* 8:e01853.

440 Cressie, N., C. A. Calder, J. S. Clark, J. M. Ver Hoef, and C. K. Wikle. 2009. Accounting for uncertainty
441 in ecological analysis: The strengths and limitations of hierarchical statistical modeling. *Ecological*
442 *Applications* 19:553–570.

443 Crone, E. E. 2016. Contrasting effects of spatial heterogeneity and environmental stochasticity on
444 population dynamics of a perennial wildflower. *Journal of Ecology* 104:281–291.

445 Csergo, A. M., R. Salguero-Gómez, O. Broennimann, S. R. Coutts, A. Guisan, A. L. Angert, E. Welk, I.
446 Stott, B. J. Enquist, B. McGill, J.-C. Svenning, C. Violle, and Y. M. Buckley. 2017. Less favourable
447 climates constrain demographic strategies in plants. *Ecology Letters*.

448 Damgaard, C. 2020. Measurement Uncertainty in Ecological and Environmental Models. *Trends in*
449 *Ecology and Evolution* 35:871–873.

450 de Souza Leite, M., S. M. McMahon, P. I. Prado, S. J. Davies, A. A. de Oliveira, H. P. D. Deurwaerder,
451 S. Aguilar, K. J. Anderson-Teixeira, N. Aqilah, N. A. Bourg, W. Y. Brockelman, N. Castaño, C.-H.
452 Chang-Yang, Y.-Y. Chen, G. Chuyong, K. Clay, Álvaro Duque, S. Ediriweera, C. E. N. Ewango,
453 G. Gilbert, I. A. U. N. Gunatilleke, C. V. S. Gunatilleke, R. Howe, W. H. Huasco, A. Itoh, D. J.
454 Johnson, D. Kenfack, K. Král, Y. T. Leong, J. A. Lutz, J.-R. Makana, Y. Malhi, W. J. McShea,
455 M. Mohamad, M. Nasardin, A. Nathalang, G. Parker, R. Parmigiani, R. Pérez, R. P. Phillips, P.
456 Šamonil, I.-F. Sun, S. Tan, D. Thomas, J. Thompson, M. Uriarte, A. Wolf, J. Zimmerman, D. Zuleta,
457 M. D. Visser, and L. Hülsmann. 2023. Major axes of variation in tree demography across global
458 forests. *bioRxiv*.

459 Ellner, S. P., D. Z. Childs, and M. Rees. 2016. Data-driven modelling of structured populations.
460 Springer.

461 Ettinger, A., and J. HilleRisLambers. 2017. Competition and facilitation may lead to asymmetric range
462 shift dynamics with climate change. *Global Change Biology* 23:3921–3933.

463 Evans, M. E. K., C. Merow, S. Record, S. M. McMahon, and B. J. Enquist. 2016. Towards Process-based
464 Range Modeling of Many Species. *Trends in Ecology and Evolution* 31:860–871.

465 Gabry, J., R. Češnovar, and A. Johnson. 2023. cmdstanr: R Interface to 'CmdStan'.

466 Godsoe, W., J. Jankowski, R. D. Holt, and D. Gravel. 2017. Integrating Biogeography with Contempo-
467 rary Niche Theory. *Trends in Ecology and Evolution* 32:488–499.

468 Gravel, D., F. Guichard, and M. E. Hochberg. 2011. Species coexistence in a variable world. *Ecology*
469 *Letters* 14:828–839.

470 Guyennon, A., B. Reineking, R. Salguero-Gomez, J. Dahlgren, A. Lehtonen, S. Ratcliffe, P. Ruiz-Benito,
471 M. A. Zavala, and G. Kunstler. 2023. Beyond mean fitness: Demographic stochasticity and resilience
472 matter at tree species climatic edges. *Global Ecology and Biogeography* 32:573–585.

473 Harwood, J., and K. Stokes. 2003. Coping with uncertainty in ecological advice: Lessons from fisheries.
474 *Trends in Ecology and Evolution* 18:617–622.

475 Heffernan, J. B., P. A. Soranno, M. J. Angilletta, L. B. Buckley, D. S. Gruner, T. H. Keitt, J. R. Kellner,
476 J. S. Kominoski, A. V. Rocha, and J. Xiao. 2014. Macrosystems ecology: understanding ecological
477 patterns and processes at continental scales. *Frontiers in Ecology and the Environment* 12:5–14.

478 Holt, R. D. 2009. Bringing the Hutchinsonian niche into the 21st century: ecological and evolutionary
479 perspectives. *Proceedings of the National Academy of Sciences* 106:19659–19665.

480 Holt, R. D., M. Barfield, and J. H. Peniston. 2022. Temporal variation may have diverse impacts on
481 range limits. *Philosophical Transactions of the Royal Society B: Biological Sciences* 377.

482 Holt, R. D., T. H. Keitt, M. a Lewis, B. a Maurer, and M. L. Taper. 2005. Theoretical models of
483 species' borders: single species approaches. *Schurr2012* 108:18–27.

484 Hutchinson, G. E. 1957. Concluding remarks. Pages 415–427 *in* Cold spring harbor symposium on

485 quantitative biology.

486 Käber, Y., P. Meyer, J. Stillhard, E. De Lombaerde, J. Zell, G. Stadelmann, H. Bugmann, and C. Bigler.
487 2021. Tree recruitment is determined by stand structure and shade tolerance with uncertain role of
488 climate and water relations. *Ecology and Evolution* 11:12182–12203.

489 Koons, D. N., S. Pavard, A. Baudisch, and C. Jessica E. Metcalf. 2009. Is life-history buffering or
490 lability adaptive in stochastic environments? *Oikos* 118:972–980.

491 Kunstler, G., A. Guyennon, S. Ratcliffe, N. Rüger, P. Ruiz-Benito, D. Z. Childs, J. Dahlgren, A.
492 Lehtonen, W. Thuiller, C. Wirth, M. A. Zavala, and R. Salguero-Gomez. 2021. Demographic
493 performance of European tree species at their hot and cold climatic edges. *Journal of Ecology*
494 109:1041–1054.

495 Leslie, P. H. 1945. On the use of matrices in certain population mathematics. *Sankhyā* 33:183–212.

496 Le Squin, A., I. Boulangeat, and D. Gravel. 2021. Climate-induced variation in the demography of 14
497 tree species is not sufficient to explain their distribution in eastern North America. *Global Ecology
498 and Biogeography* 30:352–369.

499 Levins, R. 1969. Some Demographic and Genetic Consequences of Environmental Heterogeneity for
500 Biological Control. *Bulletin of the Entomological Society of America* 15:237–240.

501 Lewis, E. G. 1942. On the generation and growth of a population. *Sankhyā* 6:93–96.

502 Louthan, A. M., D. F. Doak, and A. L. Angert. 2015. Where and When do Species Interactions Set
503 Range Limits? *Trends in Ecology and Evolution* 30:780–792.

504 Lyu, S., and J. M. Alexander. 2022. Competition contributes to both warm and cool range edges.
505 *Nature Communications* 13:1–9.

506 Maguire Jr, B. 1973. Niche response structure and the analytical potentials of its relationship to the
507 habitat. *The American Naturalist* 107:213–246.

508 May, R. M., J. R. Beddington, J. W. Horwood, and J. G. Shepherd. 1978. Exploiting natural populations

509 in an uncertain world. *Mathematical Biosciences* 42:219–252.

510 McGill, B. J. 2010. Matters of scale. *Science* 328:575–576.

511 McGill, B. J. 2012. Trees are rarely most abundant where they grow best. *Journal of Plant Ecology*
512 5:46–51.

513 Midolo, G., C. Wellstein, and S. Faurby. 2021. Individual fitness is decoupled from coarse-scale
514 probability of occurrence in North American trees. *Ecography* 44:789–801.

515 Milles, A., T. Banitz, M. Bielcik, K. Frank, C. A. Gallagher, F. Jeltsch, J. U. Jepsen, D. Oro, V.
516 Radchuk, and V. Grimm. 2023. Local buffer mechanisms for population persistence. *Trends in
517 Ecology & Evolution* 38:1051–1059.

518 Ministère des Ressources Naturelles. 2016. Norme d'inventaire ecoforestier: placettes-échantillons
519 temporaires. Direction des inventaires forestier, Ministère des Ressources naturelles, Québec.

520 Morin, X., C. Augspurger, and I. Chuine. 2007. Process-based modeling of species' distributions: what
521 limits temperate tree species' range boundaries? *Ecology* 88:2280–2291.

522 O'Connell, M. B., E. B. LaPoint, J. A. Turner, T. Ridley, D. Boyer, A. Wilson, K. L. Waddell, and
523 B. L. Conkling. 2007. The forest inventory and analysis database: Database description and users
524 forest inventory and analysis program. US Department of Agriculture, Forest Service.

525 Paquette, A., and A. L. Hargreaves. 2021. Biotic interactions are more often important at species'
526 warm versus cool range edges. *Ecology Letters* 24:2427–2438.

527 Pulliam, H. R. 2000. On the relationship between niche and distribution. *Ecology Letters* 3:349–361.

528 Purves, D. W. 2009. The demography of range boundaries versus range cores in eastern US tree species.
529 *Proceedings of the Royal Society B: Biological Sciences* 276:1477–1484.

530 Scherrer, D., Y. Vitasse, A. Guisan, T. Wohlgemuth, and H. Lischke. 2020. Competition and demography
531 rather than dispersal limitation slow down upward shifts of trees' upper elevation limits in the Alps.
532 *Journal of Ecology*:1–15.

533 Schreiber, S. J., and J. O. Lloyd-Smith. 2009. Invasion dynamics in spatially heterogeneous environments.

534 American Naturalist 174:490–505.

535 Schultz, E. L., L. Hülsmann, M. D. Pillet, F. Hartig, D. D. Breshears, S. Record, J. D. Shaw, R. J.

536 DeRose, P. A. Zuidema, and M. E. K. Evans. 2022. Climate-driven, but dynamic and complex? A

537 reconciliation of competing hypotheses for species' distributions. Ecology letters 25:38–51.

538 Shi, H., Q. Zhou, F. Xie, N. He, R. He, K. Zhang, Q. Zhang, and H. Dang. 2020. Disparity in elevational

539 shifts of upper species limits in response to recent climate warming in the Qinling Mountains,

540 North-central China. Science of the Total Environment 706:135718.

541 Shoemaker, L. G., L. L. Sullivan, I. Donohue, J. S. Cabral, R. J. Williams, M. M. Mayfield, J. M. Chase,

542 C. Chu, W. S. Harpole, A. Huth, J. HilleRisLambers, A. R. M. James, N. J. B. Kraft, F. May, R.

543 Muthukrishnan, S. Satterlee, F. Taubert, X. Wang, T. Wiegand, Q. Yang, and K. C. Abbott. 2020.

544 Integrating the underlying structure of stochasticity into community ecology. Ecology 101:1–15.

545 Sittaro, F., A. Paquette, C. Messier, and C. A. Nock. 2017. Tree range expansion in eastern North

546 America fails to keep pace with climate warming at northern range limits. Global Change Biology:1–

547 10.

548 Soberón, J. 2007. Grinnellian and Eltonian niches and geographic distributions of species. Ecology

549 Letters 10:1115–1123.

550 Svenning, J. C., and F. Skov. 2007. Could the tree diversity pattern in Europe be generated by

551 postglacial dispersal limitation? Ecology Letters 10:453–460.

552 Talluto, M. V., I. Boulangeat, S. Vissault, W. Thuiller, and D. Gravel. 2017. Extinction debt and

553 colonization credit delay range shifts of eastern North American trees. Nature Ecology & Evolution

554 1:0182.

555 Team, S. D., and Others. 2022. Stan modeling language users guide and reference manual, version

556 2.30.1. Stan Development Team.

557 Terry, J. C. D., J. D. O'Sullivan, and A. G. Rossberg. 2022. Synthesising the multiple impacts of

558 climatic variability on community responses to climate change. *Ecography* 2022:e06123.

559 Thuiller, W., T. Munkemuller, K. H. Schiffers, D. Georges, S. Dullinger, V. M. Eckhart, T. C. Edwards,
560 D. Gravel, G. Kunstler, C. Merow, K. Moore, C. Piedallu, S. Vissault, N. E. Zimmermann, D. Zurell,
561 F. M. Schurr, T. Münkemüller, K. H. Schiffers, D. Georges, S. Dullinger, V. M. Eckhart, T. C.
562 Edwards, D. Gravel, G. Kunstler, C. Merow, K. Moore, C. Piedallu, S. Vissault, N. E. Zimmermann,
563 D. Zurell, and F. M. Schurr. 2014. Does probability of occurrence relate to population dynamics?
564 *Ecography* 37:1155–1166.

565 van Daalen, S., and H. Caswell. 2020. Variance as a life history outcome: Sensitivity analysis of the
566 contributions of stochasticity and heterogeneity. *Ecological Modelling* 417.

567 Zhang, J., S. Huang, and F. He. 2015. Half-century evidence from western Canada shows forest
568 dynamics are primarily driven by competition followed by climate. *Proceedings of the National
569 Academy of Sciences* 112:4009–4014.