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Despite recent calls to use demographic range models to scale the effect of individual21

dynamics in setting range limits, there is a growing body of evidence showing that tree species’22

performance is not correlated with their distribution. In this study, we ask whether the23

challenge in predicting species distribution from demographic rates stems from overlooking24

the inherent variability of forest systems and the underlying uncertainty of forest models. We25

use a stochastic Integral Projection Model to predict species-level intrinsic population growth26

for 31 eastern North American tree species. We introduce a novel metric for species-level27

performance we coined local suitable probability, which captures observed spatiotemporal28

stochasticity in climate and competition while accommodating model uncertainty. Our focus29

is on investigating how suitable probability changes across the cold-to-hot species range30

distribution over the mean annual temperature gradient. Our findings reveal a consistent,31

nearly linear decline in suitable probability from the cold to hot borders across the species.32

This change in suitable probability towards the orders is primarily driven by climate rather33

than competition. These results, supported by a novel approach accounting for uncertainty,34

enhance our understanding of the nuanced interplay between climate and competition35

across species ranges. We conclude by proposing a novel theory that uses the local suitable36

probability to establish a link between individual demographic rates and metapopulation37

dynamics.38

Keywords: Integral Projection Models, Species distribution, Individual variability, Environmental39

stochasticity, Forest demography40

1 Introduction41

Climate warming poses a significant challenge for several species, particularly for trees that struggle42

to follow temperature warming and moving ranges (Sittaro et al. 2017). It is imperative to untangle43

the mechanisms governing their range limits to forecast how they will respond to climate change. The44

niche theory predicts that a species will be present in suitable environmental conditions that allow the45
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species to have a positive growth rate (Hutchinson 1957). From this theory, we can define the geographic46

distribution of a species as a manifestation of individual demographic rates, such as growth, survival,47

and recruitment (Holt 2009). By assuming these demographic rates change with the environment, we48

can predict a species’ range limits based on its individuals’ performance (Maguire Jr 1973, Holt 2009).49

Biotic interaction is undoubtedly an essential driver of demographic rates and, thereby, a potential50

driver of range limits. A recent theoretical framework based on coexistence theory has been proposed to51

assess how biotic interactions can scale up to affect range limits (Godsoe et al. 2017). Formally, this52

framework evaluates the intrinsic population growth rate when the focal species is rare (Chesson 2000),53

both in scenarios where there is no competition (fundamental niche) and when competitive species reach54

equilibrium (realized niche). Numerous studies have explored the influence of climate and competition55

on the distribution of forest trees across their ranges. For instance, Ettinger and HilleRisLambers56

(2017) observed in field experiments that neighboring competition constrained individual performance57

within the range but facilitated better performance outside the range. Using a dynamic forest model,58

Scherrer et al. (2020) showed how slow demographic rates and negative competition reduce the uphill59

migration rate of 16 tree species. Despite this evidence, the application of this framework to predict the60

geographic distribution of species based on demographic rates often reveals weak correlations between61

the performance of tree species and their distribution (McGill 2012, Csergo et al. 2017, Bohner and62

Diez 2020, Le Squin et al. 2021, Midolo et al. 2021, Guyennon et al. 2023, Thuiller et al. 2014).63

One possible explanation for such discrepancy between demographic rates and species distribution is64

the common practice of assessing performance under average conditions and pointwise estimations,65

neglecting the associated uncertainty in these estimates. In ecological models, the uncertainty in66

estimation arises from three distinct sources. The first source involves measurement errors, a factor often67

neglected in ecological models (Damgaard 2020). The second is process uncertainty linked to model68

(mis)specification (Harwood and Stokes 2003), determined by all variation that is not captured by the69

model covariates. Finally, even with a well-defined model and precise data, models must also consider70

parameter uncertainty due to individual variability (Cressie et al. 2009, Shoemaker et al. 2020).71

Beyond data and model uncertainty, variability in demographic rates and subsequently in the population72

growth rate (λ) arises from two primary sources (van Daalen and Caswell 2020). The first is attributed73
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to demographic and environmental stochasticity, where individuals exposed to identical conditions may74

exhibit different responses simply by chance (Caswell 2009). The second source of variability arises75

from heterogeneity encountered at various scales. These differences can manifest between individual76

stages that motivated the development of structured population models (Lewis 1942, Leslie 1945),77

and can promote high species diversity in forest trees (Clark 2010). Another source of heterogeneity78

arises from large-scale differences in neighboring patches, often described by the metapopulation theory79

(Levins 1969). This theory posits that the dynamics of occupied and empty patches in a landscape80

are driven by colonization and extinction processes. Building on this theory, Talluto et al. (2017)81

used patch variability to derive colonization and extinction rates of eastern North American trees,82

revealing their distribution to be out of equilibrium with climate. Therefore, while this result advances83

our understanding of the mechanisms governing large-scale tree distributions, there remains a need to84

reconcile it with local demographic dynamics, given that colonization and extinction processes ultimately85

manifest from demographic rates.86

Theory predicts that the uncertainty arising from stochastic and heterogenous processes may lead to87

divergent outcomes in λ. Demographic and environmental stochasticity may increase the uncertainty in88

λ, consequently increasing the extinction risk, particularly for populations with low performance or low89

density (Holt et al. 2005, Gravel et al. 2011). For instance, demographic stochasticity increased the90

extinction risk of European forest trees at the hot edge of their distribution (Guyennon et al. 2023). On91

the other hand, spatial heterogeneity has been described as a buffering process against the stochasticity92

in demographic rates, thereby increasing population persistence (Milles et al. 2023). This is particularly93

relevant in nonlinear models, where higher demographic and environmental stochasticity can increase94

the difference in population growth rate compared to the average expectations (Koons et al. 2009).95

Furthermore, demographic and environmental stochasticity influence abundance variation, indirectly96

impacting λ through density-dependence (May et al. 1978, Terry et al. 2022). A comprehensive97

understanding of the response of forest trees to climate change requires incorporating the multiple98

sources of variability arising from spatio-temporal variation and parameter uncertainty.99

Here, we use a stochastic Integral Projection Model (IPM) to predict species-level intrinsic population100

growth (λ) for 31 eastern North American tree species. The IPM integrates the growth, survival, and101

recruitment demographic rates, which vary in response to climate and competition. By fitting each102
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demographic rate using non-linear hierarchical Bayesian models, we capture parameter uncertainty103

at both the individual and local population scales. Additionally, our model naturally accommodates104

observed spatio-temporal stochasticity in climate and competition. Then, rather than ignoring these105

sources of variability, we embrace them into λ by defining species performance through a probabilistic106

framework. Specifically, we introduce a novel metric called local suitable probability, derived from107

the average population growth rate and its associated variability. This metric determines the probability108

of a positive population growth rate for a species under specific climate and competition conditions.109

In our analysis, we first used the IPM to predict species-specific λ at the plot level under two conditions:110

without (fundamental niche) and with (realized niche) heterospecific competition. We replicated this111

calculation 100 times across all observed plots from the same species to assess the variability of λ112

arising from both spatio-temporal stochasticity in the climate and competition and model uncertainty.113

As this variable λ changes across space, we used these observations to model how the species’ local114

suitable probability changes across the mean annual temperature. Specifically, we ask how climate and115

competition affect each species’ local suitable probability. Then, we investigated how a species’ local116

suitable probability changes from the center of its distribution toward the cold and hot borders. Finally,117

we disentangle the relative impacts of climate and competition in changing suitable probability from the118

center to the borders. We conclude by discussing a novel theory that uses the local suitable probability119

to establish a link between individual demographic rates and metapopulation dynamics.120

2 Methods121

2.1 Population model, demographic components, and uncertainty122

structure123

We use an Integral Projection Model (IPM) to predict the intrinsic population growth rate (λ) as124

a function of climate and competition. An IPM is a powerful modeling approach that allows a full125

representation of all sources of variability in demography. The IPM serves as a mathematical formulation126

describing the dynamics of a continuous trait distribution (z) within a population over discrete time127

steps:128
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n(z′, t + 1) =
∫ U

L
K(z′, z, X, θ) n(z, t) dz (1)

In our case, the trait z is defined as the tree’s diameter at breast height (dbh), constrained between the129

limits L and U . The continuous distribution n(·) of dbh z of a population at time t transitions to the130

next time step using a projection kernel (K). The kernel K, with parameters θ and covariates X that131

are time dependent, comprises three demographic submodels:132

K(z′, z, θ) = [Growth(z′, z, X, θ) × Survival(z, X, θ)] + Recruitment(z, X, θ) (2)

The growth model assesses the probability of an individual of size z at time t transitioning to size z′ at133

time t + 1. The survival model determines the probability of an individual with size z at time t surviving134

to the next time step. Lastly, the recruitment model determines the number of new individuals entering135

the population at each time step as a function of total density z. The kernel K has the same function136

of the population growth rate r in a population model, where multiplying the population distribution137

n(z, t) with K gives the population distribution at the next time step n(z′, t + 1). Its advantage in138

propagating uncertainty is that, instead of having a matrix with fixed parameters determining the139

transition rate of population individuals over time, it uses a probability distribution with uncertainty140

derived from the demographic models to project individuals over time.141

With the defined K, we can estimate the intrinsic population growth rate for a determined set of142

conditions from the covariates X and sampled parameters from the posterior distribution θ. Specifically,143

we discretize the continuous kernel K using the mid-point rule (Ellner et al. 2016) and estimate the144

intrinsic population growth rate using the dominant eigenvalue of the discretized K. This approach is a145

local approximation of the population growth rate at the initial time steps.146

A detailed description of the data and model development is available in Chapter 2. In summary, we147

evaluated non-linear statistical models to formulate the growth, survival, and recruitment components148

of the IPM, along with their uncertainty. Each demographic sub-model varies as a function of the149

mean annual temperature, mean annual precipitation, and stand basal area of larger individuals. Each150
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model’s parameters (θ) are species-specific, as each model is fitted separately for each species. Both151

climate variables influence each demographic model through an unimodal link function, where each152

model exhibits an optimal climate and niche breadth for temperature and precipitation. Additionally,153

density dependence is integrated based on the plot’s total basal area of larger individuals. Stand density154

affects growth and survival through a linear model, in which two parameters determine the strength of155

interaction from conspecific and heterospecific (all species combined) competition. For the recruitment156

model, the annual ingrowth rate is modulated by conspecific stand basal area, using an unimodal157

function to account for both the positive effect of seed source and the negative effect of conspecific158

competition. Furthermore, the annual survival rate of potential ingrowth individuals decreases linearly159

with the stand density of heterospecific individuals. Finally, the intercept of each growth, survival, and160

recruitment model incorporates plot-level random effects to control for the variance shared within the161

plot-year observations.162

We use two open inventory datasets from eastern North America: the Forest Inventory and Analysis163

(FIA) dataset in the United States (O’Connell et al. 2007) and the permanent plots of forest inventory164

program for Québec (Ministère des Ressources Naturelles 2016). These inventories, with multiple165

individual measurements over time and space, allowed us to use the transition information between166

measurement years for predicting growth, survival, and recruitment rates. We selected the 31 most167

abundant species, comprising 9 conifer species and 22 hardwood species, well-dispersed across shade168

tolerance and successional status (Supplementary Material 1). These species are well distributed across169

the eastern North American gradient and the sampling area covers cold and hot range limits for most170

species.171

2.2 Extracting local suitability probability172

We estimate λ at the local population scale, specifically at the plot level in our study. Within a given173

geographic location, such as a specific latitude where several plots are located, the variance of λ among174

those plots arises from spatio-temporal variations in both climate and competition covariates. For175

instance, climate stochasticity introduces noise in annual temperature and precipitation, leading to176

environmental variation. Similarly, even with identical climate conditions, two locations can exhibit177

different community abundance and composition, resulting in variability in the strength of competition.178
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Beyond these spatio-temporal environmentally-induced variations, λ can still vary due to the other179

sources of uncertainty discussed above.180

We track demographic model uncertainty at two complementary scales: individual and plot levels. At181

the individual level, without plot random effects, two plots with the same climate and competition182

conditions may have different λ values due to the uncertainty in the demographic growth, survival, and183

recruitment sub-models. Similarly, with the same environmental conditions and averaged parameter184

values (eliminating demographic uncertainty at the individual level), two plots can still yield different185

λ values due to the spatial uncertainty of each demographic model due to the plot random effects.186

Therefore, variability in the population growth rate can arise from spatio-temporal variations in both187

the environment and the parameters.188

Given these different sources of variability in λ, we define the suitable probability as the area under the189

distribution for λ ≥ 1. To estimate this, we first determine the cumulative distribution function, F (x),190

from the generic probability density function, λ = f(t), as follows:191

Fλ(x) = P (λ ≤ x) =
∫ 1

−∞
f(t)dt (3)

This function represents the cumulative distribution from −∞ to x. Subsequently, we define the suitable192

probability (Λ) as the complement of the cumulative distribution function for x = 1:193

Λ = 1 − Fλ(1) (4)

2.3 Modeling suitable probability194

We can evaluate the suitable probability of a species at various scales, ranging from a single local195

plot up to several plots in a region. At the plot level, sources of variability in λ stem from parameter196

uncertainty, individual heterogeneity, and temporal variability in climate and competition. When197

considering multiple plots simultaneously, we can additionally account for spatial variability in climate198

and competition, along with spatial uncertainty in plot-level parameters.199
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Apart from parameter uncertainty at the individual level, all other sources of variability exhibit spatial200

dependence. This implies that environmental variability (from climate, competition, or both) and201

parameter uncertainty at the plot level can vary based on their spatial location. For instance, plots at202

the border of the species distribution may experience more temperature variability than those at the203

center. Additionally, plot-level parameter uncertainty can be spatially clustered, capturing potential204

features of demographic variability beyond the climatic and competition covariates, such as historical205

factors or local edaphic conditions.206

Given that variability can be spatially dependent, we can model how suitable probability changes across207

the species’ range distribution, considering both fixed climate and competition effects and the underlying208

spatio-temporal variability. We are particularly interested in how suitable probability changes from the209

center toward the cold and hot ranges. For that, we categorized all species’ plot-year observations based210

on the gradient of mean annual temperature (MAT), divided into cold and hot ranges using the MAT211

centroid among all plots for the species (max(MAT )+min(MAT )
2 ). For instance, if a species is observed212

within the 4-10°C gradient of MAT, the plots with MAT below 7°C are classified as cold, while the213

others are classified as hot. We chose to use MAT instead of latitude because we are interested in the214

species’ climatic niche, although the two variables are highly correlated.215

We assessed suitable probability separately for the cold and hot ranges, employing a linear model to216

determine the relationship between λ and MAT. The spatio-temporal variability of λ arising from217

environmental stochasticity and parameter uncertainty influences the variance of the linear model. As218

this variance may change depending on the range position, we introduce a submodel for the variance of219

the linear model to be dependent on MAT. To accommodate potential asymmetry in this variance, we220

use a Skew Normal Distribution (SN) incorporating an additional parameter (α) that can introduce221

right or left-skewed tails to the variance:222

log(λ) ∼ SN(ξ, ω, α)

ξ = β1,ξ × MAT + β0,ξ

ω = eβ1,ω×MAT +β0,ω

(5)
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Here, ξ is the location parameter or the λ average, and ω is the scale representing the variance around223

the mean.224

2.3.1 Simulations225

We computed λ for each species based on the plot-year observations in the dataset, considering both226

environmentally induced variability and parameter uncertainty. For every observed species-plot-year227

combination, we incorporated temporal stochasticity in climate conditions by using the mean and228

standard deviation of mean annual temperature and precipitation calculated from the years between229

measurements. For instance, in the case of a plot observed twice, we calculated λ for the second230

observation with climate conditions drawn randomly from a normal distribution with mean and standard231

deviation extracted from plot specific climate observations for each year within the time interval.232

Similarly, temporal stochasticity in competition arises from variation in abundance and composition233

between measured years. By iteratively performing this calculation, drawing parameter values randomly234

from the posterior distribution, we introduced demographic uncertainty at the individual level. For each235

species-plot-year measurement, we replicated the calculation of λ 100 times. By applying this approach236

across all plots, we naturally incorporate spatial variation in climate and competition conditions and237

spatial uncertainty in plot-level parameters.238

For each species-plot-year-replication combination, we calculated λ under two simulated conditions.239

The first scenario excludes competition in order to evaluate the fundamental niche, with heterospecific240

competition set at zero and conspecific total population size (N) set at 0.1. This simulation is used to241

assess the fundamental niche. The second scenario is used to evaluate the invasion growth rate with242

residents (the realized niche), with an evaluation of the population growth rate when the focal species243

is rare (N = 0.1) and heterospecific competition is set to the observed abundance of the competitive244

species. This condition simulated the population growth rate under the realized niche.245

We then fitted a linear model of λ for each species-plot-year-replication as a function of the mean annual246

temperature gradient. Species-specific linear models were evaluated for the hot and cold ranges using247

the Hamiltonian Monte Carlo (HMC) algorithm via the Stan software (version 2.30.1 Team and Others248

2022) and the cmdstandr R package (version 0.5.3 Gabry et al. 2023). We conducted 1000 iterations249

for the warm-up and 1000 iterations for the sampling phase for each of the four chains, resulting in 4000250
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posterior samples (excluding the warm-up). We used a sample of 5000 plots for each species to fit the251

model. This sample was necessary only for 6 out of the 31 species.252

We leveraged the posterior distribution to estimate the suitable probability of a species for any value253

of MAT under fundamental or realized niches for the cold and hot ranges. Specifically, we estimated254

suitable probability under four different MAT conditions encountered by the species: at the border and255

the center of each cold and hot range. We defined the border of the cold range as the minimum observed256

MAT for the focal species in the dataset, while the hot range was defined as the maximum observed257

MAT. The center location is defined as the centroid of MAT for the focal species. Although the center258

location has the same MAT for the cold and hot ranges, both are retained because the model is fitted259

separately for the cold and hot ranges. Finally, we estimated suitable probability for each location under260

no competition (fundamental niche) and heterospecific competition (realized niche) conditions, using261

the empirical cumulative distribution function over 1000 predictive draws.262

The code for the computation of each plot-year λ is available at https://github.com/willvieira/fo263

rest-IPM/tree/master/simulations/lambda_plot, and the code to model the linear model is at264

https://github.com/willvieira/forest-IPM/tree/master/simulations/model_lambdaPlot/.265

3 Results266

3.0.1 Model fit267

We first analyzed how the local population growth rate (λ) and its variability change across the cold268

and hot ranges (Equation 5). An example is provided at Figure 1 with the observed distribution of269

λ and the fit of the underlying model on the mean annual temperature gradient for balsam fir, Abies270

balsamea. Each point represents a plot-year-replication encompassing the complete spatio-temporal271

sources of variability arising from the stochastic environment and parameter uncertainty. The black line272

represents the fitted model of how λ changes with MAT, and the envelopes depict the 90th quantiles273

of model distribution. From this uncertainty, we can deduce the suitable probability. This example274

shows that the mean and variance of λ decrease towards the cold border, while it does not vary much275

towards the hot border. By comparing the model under heterospecific competition with that without276

11

https://github.com/willvieira/forest-IPM/tree/master/simulations/lambda_plot
https://github.com/willvieira/forest-IPM/tree/master/simulations/lambda_plot
https://github.com/willvieira/forest-IPM/tree/master/simulations/lambda_plot
https://github.com/willvieira/forest-IPM/tree/master/simulations/model_lambdaPlot/


competition for the cold range, we observed that while their average is similar, the uncertainty of the277

model under heterospecific competition shifted downwards (Figure 1, bottom left).278

Figure 1: Distribution of stochastic population growth rate (λ) for Abies balsamea over the
mean annual temperature gradient for different conditions. Species’ population are split into
cold (left panels) and hot (right panels) ranges under no competition (fundamental niche) and
heterospecific competition (realized niche). The dots represent λ over the plot-year-replication
combinations. The model’s average line and 90% prediction intervals are estimated using 500
draws from the posterior distribution.

We then investigated the local suitability probability using the empirical cumulative distribution approach279

(Equation 4) from the linear model predictions. The Figure 2 shows the suitable probability expected280

over the mean annual temperature of the same species. We observed that the local suitability probability281

was reduced towards the cold border, with a stronger reduction under heterospecific competition (yellow282

curve). We can also observe that the decrease in suitable probability towards the border is nonlinear,283

becoming more substantial for heterospecific competition than for the no-competition condition.284
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The model fit and the estimation of suitable probability across the temperature gradient for all species285

are presented in Supplementary Material 2. We observed for most species a decrease of the climate286

effect at one border while the other remained unchanged. Additionally, a few species displayed a clear287

linear pattern of decreasing suitable probability from the cold to the hot border, with only one species288

(Betula papyrifera) having a decrease at both borders. Conversely, under the competition effect, most289

species exhibited a decrease in suitable probability at the hot border and an increase at the cold border,290

indicating a linear rise in the impact of competition from the cold to the hot border of the distribution.291

Figure 2: Suitable probability of Abies balsamea over the mean annual temperature gradient
for cold and hot ranges under no competition (green) and heterospecific (yellow). The vertical
dotted line represents the range limits of the MAT observed in the dataset.

3.0.2 Effect of climate and competition on suitable probability for the center and292

border distributions293

We investigated the effect of climate and competition on the suitable probability at the border and294

center of the temperature range distribution for all species. Because the border and center positions are295

relative to each species, we could not represent the continuous trend in suitable probability across the296

MAT for all 31 species together. Instead, we extracted the local suitable probability with and without297

heterospecific competition for four locations across the MAT gradient (Figure 3). Overall, suitable298

probability was high among the species, with an average of 0.78. Among the four locations, species299

presented a lower suitable probability at the border of the hot range, with an average of 0.67. Across the300

13



temperature range, there is a monotonic decrease in suitable probability from the cold border toward301

the hot border.302

Figure 3: Estimated suitable probability for the 31 forest species across the center and border of
the cold and hot ranges. The x-axis represents the mean annual temperature gradient similar to
Figure 2, but is discretized at the border and center limits relative to each species. We highlighted
the balsam fir species in red. Note that we omitted the parameter uncertainty of each species in
this figure to avoid overlap and increase clarity.

We further disentangle the influence of competition from that of climate by calculating the difference303

between suitable probability under heterospecific competition and without competition. A negative304

difference signifies competition reduces suitable probability, while positive differences indicate an increase.305

Across the four climate locations, heterospecific competition consistently reduced suitable probability306

for most species, with the magnitude of reduction intensifying from the cold to the hot border (Figure307

S1). This suggests that the decline in suitable probability observed from the cold to the hot border308

(Figure 3) results from the combined effect of climate and competition.309

3.0.3 Suitable probability change from center to border310

We investigated the relative effect of climate and competition on changing suitable probability from the311

center to the border of the species distribution (Figure 4). A positive relative difference indicates an312

increase in suitable probability from the center towards the border, while a negative difference indicates313
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a decrease. Most species exhibited a decrease in suitable probability at the hot border relative to the314

center. Alternatively, most species showed a reduction in the effect of competition toward the cold315

border. However, the climate effect in the cold range was more variable, with some species experiencing316

an increase and others a decrease in suitable probability (Figure S2). Overall, the relative difference in317

suitable probability from the center toward the cold and hot borders was more influenced by climate318

rather than competition.319

Figure 4: Difference in suitable probability for climate and competition effects over the cold
and hot ranges. Negative values denote a decrease in species suitable probability from the
center towards the distribution border, while positive values indicate an increase. Specifically, a
negative value for climate at the hot (or cold) range signifies a reduction in suitable probability as
temperature rises (or falls) towards the border. Boxplots determine the 25-75 quantile distribution
among the species.

4 Discussion320

Understanding the mechanisms shaping species distribution is imperative to face ongoing global changes.321

We acknowledged and integrated various sources of variability in the population growth rate of forest322

trees, contributing to an improved understanding of forest dynamics in an uncertain world. Introducing323

a novel metric, we quantified the relative impacts of climate and competition on the change in suitable324

probability across species distributions. Our findings revealed a nearly linear reduction in suitable325

probability from the cold to hot borders. Notably, the predominant influence on the relative difference in326

suitable probability from the center toward the border was attributed to climate rather than competition.327
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These results, supported by a novel approach accounting for uncertainty, enhance our understanding of328

the nuanced interplay between climate and competition across species ranges.329

The suitable probability was high across all species and range locations, with only around 5% of all330

species-location combinations having a suitable probability below the 0.5 threshold. This is primarily331

attributed to most species exhibiting a high positive population growth rate across their current332

range distribution. Additionally, the spatio-temporal variability in the environment and the parameter333

uncertainty in the plot may contribute to the elevated average population growth rate due to nonlinear334

averaging. This aligns with theoretical (Schreiber and Lloyd-Smith 2009) and empirical (Crone 2016)335

studies suggesting that spatial heterogeneity should increase the population growth rate.336

Competition significantly reduces local suitability across all range locations, with a stronger and more337

consistent effect at the cold border, contributing to the ongoing debate surrounding its significance338

in setting range limits. Despite several studies emphasizing the effect of competition compared to339

climate on the demographic rates of forest trees (Zhang et al. 2015, Käber et al. 2021, Le Squin et al.340

2021), debates persist regarding whether this effect at the local scale translates to the biogeographic341

distribution of species (Soberón 2007, Copenhaver-Parry et al. 2017). Our findings support the Godsoe342

et al. (2017) hypothesis and a growing body of evidence (Scherrer et al. 2020, Shi et al. 2020, Paquette343

and Hargreaves 2021, Lyu and Alexander 2022) showing that the effect of competition on the intrinsic344

population growth rate can indeed contribute to range limits.345

The decline in suitable probability from the cold to the hot border suggests a predominantly linear, rather346

than unimodal, relationship with temperature for most species (Figure S3). This result is consistent347

with reduced population growth rates in North American (Le Squin et al. 2021, Schultz et al. 2022) and348

European (Guyennon et al. 2023) forest trees, except for the contrasting pattern observation by Purves349

(2009). The higher suitable probability in the cold range compared to the hot range could be attributed350

to multiple factors. First, species may still follow their climate niche post the last glaciation, explaining351

why the current cold range limit does not align with the expected niche distribution (Svenning and352

Skov 2007), potentially leading to a colonization debt (Talluto et al. 2017). Notably, four of the six353

species exhibiting a significant decrease in suitable probability from the center toward the cold range354

were already at the extreme cold observed in the dataset (Figure S4).355
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Our model may however overlook crucial drivers of species performance, despite capturing a substantial356

amount of variation from parameter uncertainty at the plot level. Factors such as the impact of extreme357

temperature and precipitation on phenology can influence tree range limits (Morin et al. 2007). Beyond358

covariates and plot-level uncertainty, incorporating temporal uncertainty at the plot level, accounting359

for spatio-temporal covariance, could likely capture additional sources of variation in demographic rates.360

While our approach considers temporal stochasticity in climate and competition, which affect species361

range size (Holt et al. 2022), there remains temporal variation in demographic rates beyond these362

covariates. This variability, possibly captured with random effects at the plot level, can influence range363

limits based on the degree of temporal autocorrelation and its relationship with the range (Benning et364

al. 2022). For instance, an empirical study on perennial herbaceous species demonstrated that temporal365

environmental stochasticity reduced the population growth rate relative to the average (Crone 2016).366

In our study, this temporal variability is particularly relevant for survival (due to disturbance) and367

recruitment (due to phenology) rates because, in addition to having high temporal variability (Clark et368

al. 1999, de Souza Leite et al. 2023), they represent the most significant drivers of population growth369

rate (Chapter 2).370

The effect of competition, similar to climate, increased from the center towards the border of the hot371

range, contrary to Kunstler et al. (2021), who found no difference in the competition effect between the372

center and border of the species. Additionally, our results deviate from the Species Interactions-Abiotic373

Stress Hypothesis, predicting a stronger competition effect in less stressful climate conditions (Louthan374

et al. 2015). When considering the relative position of the species across the temperature gradient,375

only the effect of climate at the cold range changed with temperature. This indicates that most species376

have a similar or higher suitable probability at the border of the cold range compared to their center377

distribution. We further tested whether the species’ range size affects the relative difference in suitable378

probability; while the absolute values change, the pattern among the species remains unchanged.379

The climate gradient of temperature had a more significant effect than competition in changing the380

suitable probability of forest trees. This means that mean annual temperature, along with all latent381

variables, better explains how suitable probability changes across the temperature range. The choice of382

using only mean annual temperature as an explanatory variable for the variance of λ can be improved.383

For instance, the model could be built accounting for mean annual temperature and precipitation to384
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predict the complete two-dimensional distribution of the species’ climate niche. Plot random effects385

could be further used to account for the nestedness of the data design, allowing the proper separation of386

the total variance of the metamodel into variance arising from individual- and plot-level demographic387

uncertainty. While we have assumed climate variability as independent and identically distributed388

random variables, this assumption can be relaxed to include temporal autocorrelation. Autocorrelated389

environmental fluctuation can significantly change a species’ range limits due to nonlinear averaging390

(Benning et al. 2022, Holt et al. 2022). Lastly, although coexistence theory assumes the abundance of391

competitors to be at equilibrium (Chesson 2000), testing this assumption remains practically impossible.392

Despite the many ways of improving our study, there is a growing body of evidence indicating a mismatch393

between performance and occurrence (McGill 2012, Csergo et al. 2017, Bohner and Diez 2020, Le Squin394

et al. 2021, Midolo et al. 2021, Guyennon et al. 2023, Thuiller et al. 2014). Our approach can better395

capture the nuanced effect of climate and competition along with the spatio-temporal variation in λ,396

yet it was not enough to fully predict tree range limits. Since species distribution is influenced by397

processes at multiple scales (McGill 2010, Heffernan et al. 2014), it is challenging to rely on a single398

individual-level performance metric to predict it all (Evans et al. 2016). For instance, dispersion plays a399

crucial role in changing species distribution at larger spatial scales, either reducing its extent due to400

limited dispersal or increasing it through source-sink dynamics (Pulliam 2000). We propose that our401

novel metric, local suitable probability, can be a key unifying factor linking local and landscape scales.402

Forest trees exhibit variation in their frequency of occurrence across distribution gradients, yet their403

relative abundance remains consistent when present (Canham and Thomas 2010). Such observation404

implies that assessing forest distribution should focus on colonization and extinction patch dynamics405

rather than local performance (Canham and Murphy 2017). However, instead of restricting models406

to either local or large scales, we propose using the local suitable probability to reconcile the local407

demographic dynamics with the metapopulation theory. Colonization and extinction processes, as408

described by metapopulation theory (Levins 1969), are well-suited for describing the mosaic of forest409

successional stages at the landscape scale resulting from natural disturbances and succession. However,410

an implicit assumption is that unoccupied patches are necessarily available for colonization. We relax this411

assumption and quantify patch availability using the local suitable probability metric (Λ). Considering an412

ensemble of patches (p) where individuals can arrive and establish in empty patches through colonization413
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(α), and occupied patches can become empty through extinction (ε), the integrated metapopulation414

model becomes:415

dp

dt
= αp(Λ − p) − εp (6)

With this formulation, rather than having 1 − p available patches for colonization, we have Λ − p.416

Therefore, when λ and its variability are high, the local suitable probability equals 1, indicating that all417

non-occupied patches are available. Conversely, as the local suitable probability decreases, the proportion418

of non-occupied patches available for colonization is reduced. This integrative approach allows one to419

account for both the local (e.g. competition and climate) and landscape (e.g. fire disturbances and420

dispersal) drivers of forest dynamics when assessing tree distribution.421
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