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Abstract19
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phenomenological models. Despite numerous forest models adopting this approach to22

explore the influence of climate and competition on species population growth rate, the23

correlation of species performance with their distribution is often weak. What remains24

unclear is whether the mismatch between species performance and distribution arises25

from modelling limitations or if climate and competition are poor predictors of species26

distribution. Here, we developed an Integral Projection Model to evaluate the impact of27

climate and competition on all demographic components of 31 tree species from eastern28

North America. By using flexible nonlinear hierarchical models, we filled most of the gaps29

in previous studies while accounting for process uncertainty. Using perturbation analysis,30

we found that population growth rate was more sensitive to mean annual temperature than31

conspecific and heterospecific competition for all species. Furthermore, we examined how32

population growth rate sensitivity to climate and competition varied across the species33

range. The dominance of climate over competition increased as species approached the34

cold or hot temperature ranges. Moreover, most species exhibited a decline in population35

growth rate sensitivity to competition from the cold to the hot temperature range. Notably,36

the most influential variable remained the local plot conditions captured by the random37

effects. Unveiling species-specific sensitivity to climate and competition provides crucial38

insights into how species may respond to emerging conditions resulting from climate change39

and disturbance changes.40

Keywords: Integral Projection Models, Perturbation analysis, demography performance41

1 Introduction42

The urge to unravel species distribution processes has increased with the current global crisis, where 15 to43

37% of species are expected to face extinction due to climate change (Thomas et al. 2004). This urgency44

is particularly pertinent for long-lived sessile species like trees, whose range distribution is likely to fail to45

follow climate change (Zhu et al. 2012, Sittaro et al. 2017). In an effort to enhance traditional correlative46

species distribution models (e.g. Guisan and Zimmermann 2000), theory decomposes species distribution47

into smaller components to develop a more mechanistic, process-based approach (Evans et al. 2016). One48
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such approach is demographic range models, which predicts a species’ distribution based on individual49

performance determined by growth, survival, and recruitment rates (Pagel and Schurr 2012). This50

approach operates under the hypothesis that population growth rate (λ), determined by demographic51

rates, varies across the environment, with the species range limit defined by conditions where λ is positive52

(Maguire Jr 1973, Holt 2009). By approaching species distribution from a demographic perspective, we53

can account for the complexity of forest dynamics arising from multiple features such as environment54

and species interaction (Schurr2012; Svenning et al. 2014).55

Several studies have attempted to predict species distribution based on demographic performance of56

forest trees. The most basic version of these models uses environment-dependent demographic rates to57

predict λ (e.g. Merow et al. 2014, Csergő et al. 2017). However, factors like competition undeniably58

influence both demographic rates (Clark et al. 2011, Luo and Chen 2011, Zhang et al. 2015) and59

population performance (Scherrer et al. 2020, Le Squin et al. 2021) in forest trees. This realized version60

of the niche (Hutchinson 1957) may explain why North American forest trees often do not occur within61

their climatically suitable range (Boucher-Lalonde et al. 2012, Talluto et al. 2017).62

An increasing body of evidence conflicts with theoretical expectations by observing weak correlations63

between the demographic performance of trees and their distribution (McGill 2012, Csergő et al. 2017,64

Bohner and Diez 2020, Le Squin et al. 2021, Midolo et al. 2021, Guyennon et al. 2023, Thuiller et al.65

2014). This mismatch is often attributed to the oversight of processes beyond climate and competition.66

For instance, habitat availability coupled with dispersal limitations can restrict a species’ distribution67

even in locations where performance is positive (Pulliam 2000). However, the precision of methods used68

to quantify demographic performance is rarely challenged, perhaps in part because each attempt employs69

a different approach. Some studies assess performance based solely on one of the growth, survival,70

or recruitment rates (McGill 2012, Bohner and Diez 2020). When demographic rates are integrated71

into population models, specific components, such as recruitment, are often overlooked due to data72

limitations (Kunstler et al. 2021, Le Squin et al. 2021). Moreover, some studies do not account for73

density dependence (Csergő et al. 2017, Ohse et al. 2023), and when they do, they rarely differentiate74

between conspecific and heterospecific competition (Bohner and Diez 2020, Le Squin et al. 2021).75

Finally, despite the need to embrace model and data uncertainty (Milner-Gulland and Shea 2017), most76

of these studies assessed performance under average covariate conditions and pointwise estimations,77
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neglecting the associated uncertainty of the estimates.78

Rather than asking whether demographic performance correlates with distribution, a more fruitful79

question may be how climate and competition influence demographic performance. Indeed, we still miss80

a comprehensive partitioning of the sensitivity of forest dynamics to local and biogeographical drivers of81

performance (Ohse et al. 2023). For instance, Clark et al. (2011) found that annual growth rate is more82

sensitive to competition, while fecundity is more sensitive to climate. In contrast, Copenhaver-Parry83

and Cannon (2016) found that growth was more sensitive to climate than competition. These studies84

provide crucial insights into how forest trees will respond to climate change and forest management,85

supporting conservation planning. However, they only assess the importance of climate and competition86

on single demographic components, lacking a complete picture of population dynamics. This is especially87

critical if species are susceptible to variation in sensitivity to climate and competition across life history88

stages (Russell et al. 2012, Ettinger and HilleRisLambers 2013). Furthermore, the sensitivity of λ to89

climate and competition may depend on the species range position, such as climate being relatively more90

important in abiotic stressful conditions and competition being more critical when climate is benign91

(Louthan et al. 2015). Nevertheless, such information is still lacking for trees (Ohse et al. 2023).92

Here, we evaluate how climate and competition affect the demography and population growth rate of93

the 31 most abundant forest tree species across Eastern North America. We leverage the complete (26 -94

53°) latitudinal coverage of forest inventories across the US and Canada to capture the entire range95

of these species. Specifically, we model each of the growth, survival, and recruitment vital rates as a96

function of mean annual temperature and precipitation, as well as conspecific and heterospecific basal97

area density, serving as a proxy for competition for light. We fit these demographic models with a98

flexible, non-linear hierarchical Bayesian model. The non-linear approach captures both the complexity99

of trees’ demographic rates and the multiple-effect forms of climate and competition. Furhtermore, the100

hierarchical Bayesian approach allows one to account for model uncertainty at different organizational101

scales. These demographic rate models are then incorporated into a size-structured Integral Projection102

Model (IPM) to quantify the λ of each species under climate and competition effects.103

Our primary goal is to use the fitted IPM to compute the sensitivity of each species’ λ to climate and104

competition across their range. Employing perturbation analysis, we quantify the relative contribution105
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of each covariate to changes in λ (Caswell 2000). Precisely, we assess the species sensitivity of an106

observed λ for each plot-year combination based on their specific climate and competition conditions.107

This approach enables an evaluation of the overall sensitivity of λ to a covariate while considering the108

inherent variability of the covariate experienced by the species. For instance, a species may exhibit109

high sensitivity to temperature, but if most of its distribution is observed under optimal temperature110

conditions, the average sensitivity of the species will be low.111

Lastly, expanding on previours findings indicating the inability of North American trees to both expand112

their cold range and contract their hot range under climate change (Talluto et al. 2017), we ask if113

sensitivity to climate and competition changes across the species’ cold and hot ranges. Furthermore, we114

explore whether the relative sensitivity between climate and competition changes across the species’115

distribution range. Our integrative approach allows us to assess the relative effects of climate and116

competition from demographic rates up to the population growth rate while accounting for model117

uncertainties and stand structure, revealing essential insights into understanding the response of forest118

trees to climate change, management practices, and conservation efforts.119

2 Methods120

2.1 Forest inventory and climate data121

We used two open inventory datasets from eastern North America: the Forest Inventory and Analysis122

(FIA) dataset in the United States (O’Connell et al. 2007) and the Forest Inventory of Québec (Ministère123

des Ressources Naturelles 2016). At the plot level, we focused on plots sampled at least twice, excluding124

those that had undergone harvesting to concentrate solely on natural dynamics. Specifically, we selected125

surveys conducted for the FIA dataset using the modern standardized methodology implemented since126

1999. After applying these filters, our final dataset encompassed nearly 26,000 plots spanning a latitude127

range from 26° to 53° (Figure S7). Each plot within the dataset was measured between 1970 and 2021,128

with observation frequencies ranging from 2 to 7 times and an average of 3 measurements per plot.129

The time intervals between measurements varied from 1 to 40 years, with a median interval of 7 years130

(Figure S7).131
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These datasets provide individual-level information on the diameter at breast height (DBH) and the132

status (dead or alive) of more than 200 species. From this pool, we selected the 31 most abundant133

species (Table S1). This selection comprises 9 conifer species and 22 hardwood species. We ensured134

an even distribution of species across the shade tolerance axis, with three species classified as very135

intolerant, nine as intolerant, eight as intermediate, eight as tolerant, and five as very tolerant (Burns et136

al. 1990).137

For the competition metric, we use asymmetric competition for light, meaning that each individual is138

affected only by neighbour individuals of larger size. We quantified asymmetric competition for light139

for a focal individual in a given plot by summing the total basal area of all individuals larger than the140

focal one, herein BAL. We further split BAL into the total density of conspecific and heterospecific141

individuals. For the climate variable, we obtained the 19 bioclimatic variables with a 10 km2 (300142

arcsec) resolution grid, covering the period from 1970 to 2018. These climate variables were modeled143

using the ANUSPLIN interpolation method (McKenney et al. 2011). We used each plot’s latitude and144

longitude coordinates to extract the mean annual temperature (MAT) and mean annual precipitation145

(MAP). In cases where plots did not fall within a valid pixel of the climate variable grid, we interpolated146

the climate condition using the eight neighboring cells. Due to the transitional nature of the dataset,147

we considered both the average and standard deviation of MAT and MAP over the years within each148

time interval.149

2.2 Model150

We evaluated the population growth rates of the 31 forest species using an Integral Projection Model151

(IPM). An IPM is a mathematical tool used to represent the dynamics of structured populations and152

communities. It distinguishes itself from traditional population models with the representation of a153

continuous trait in discrete time (Easterling et al. 2000). This is especially relevant for trees due to the154

considerable variability in demographic rates depending on individual size (Kohyama 1992). Specifically,155

the IPM consists of a set of functions predicting the transition of a distribution of individual traits from156

time t to time t+ 1:157
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n(z′, t+ 1) =
∫ U

L
K(z′, z, θ)n(z, t) dz (1)

The continuous trait z at time t represents the DBH, bouded between the lower (L) and upper (U)158

values, and n(z, t) characterizes the continuous DBH distribution for a population. The probability159

of the population distribution size from n(z, t) to n(z′, t + 1) is governed by the kernel K and the160

species-specific parameters θ. The kernel K, a continuous version of the discretized projection Matrix in161

structured population models, is composed of three sub-models:162

K(z′, z, θ) = [Growth(z′, z, θ) × Survival(z, θ)] +Recruitment(z, θ) (2)

The growth function describes how individual trees increase in size, while the survival function determines163

the probability of staying alive throughout the next time step. The recruitment model describes the164

number of individuals ingressing the population. Below, we describe the basic (intercept) version of165

these models, followed by the inclusion of each climate and competition covariate.166

2.2.1 Demographic rates167

Growth - the size in DBH of an individual at time t+ ∆t after growing from time t is determined by:168

dbhi,t+∆t ∼ N(µi,t+∆t, σ) (3)

We used the von Bertalanffy growth equation to describe the annual growth rate in DBH of an individual169

i (Von Bertalanffy 1957). The average size at time t+ ∆t from the initial size dbhi,t of an individual at170

time t is given by:171

µi,t+∆t = dbhi,t × e−Γ∆t + ζ∞(1 − e−Γ∆t) (4)

Where ∆t is the time interval between the initial and final size measurements and Γ represents a172
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dimensionless growth rate coefficient. ζ∞ denotes the asymptotic size, which is the location at which173

growth approximates to zero. The rationale behind this model is that the growth rate exponentially174

decreases with size, converging to zero as size approaches ζ∞. This assumption is particularly valuable175

in the context of the IPM, as it prevents eviction — where individuals are projected beyond the limits176

of the size distribution ([L,U ]) defined by the Kernel.177

Survival - The chance of a mortality event (M) for an individual i within the time interval between t178

and t+ ∆t is modeled as a Bernoulli distribution:179

Mi ∼ Bernoulli(pi) (5)

Here, Mi represents the individual’s status (alive/dead) and pi the mortality probability of the individual180

i. The mortality probability is calculated based on the annual survival rate (ψ) and the time interval181

between census (∆t):182

pi = 1 − ψ∆t (6)

The model assumes that the survival probability (1 − pi) increases with the longevity parameter ψ, but183

is compensated exponentially with the increase in time ∆t.184

Recruitment - We combined data from the U.S. and Quebec forest inventories to obtain a broader185

range of climatic conditions. However, these inventories have inconsistent protocols for recording186

seedlings, saplings, and juveniles. Most of all, they have different size thresholds for individual-based187

measurements. Therefore, we quantified the recruitment rate (I) as the ingrowth of new individuals188

into the adult population, defined as those with a DBH exceeding 12.7 cm. The quantity I encompasses189

the processes of fecundity, dispersal, growth, and survival up to reaching the size threshold. Similar to190

growth and survival, the count of ingrowth individuals (I) reaching the 12.7 cm size threshold depends191

on the time interval between measurements. We introduce two parameters to control the potential192

number of recruited individuals: ϕ, determining the annual ingrowth rate per square meter, and ρ,193

denoting the annual survival probability of each ingrowth individual:194
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I ∼ Poisson( ϕ×A× 1 − ρ∆t

1 − ρ
) (7)

Where A represents the area of the plot in square meters. The model assumes that new individuals195

enter the population annually at a rate of ϕ, and their likelihood of surviving until the subsequent196

measurement (ρ) declines over time. Note that ρ in Equation 7 is not associated with Equation 6197

determining the survival of the adults. Instead, ρ is estimated from the data of individuals arriving in198

the population. Once an individual is recruited into the population, a submodel determines its initial199

size zI , increasing linearly with time:200

zI ∼ TNormal(Ω + β∆t, σ, α, β) (8)

The TNormal is a truncated distribution with lower and upper limits determined by the α and β201

parameters, respectively. We set α to 12.7 cm, aligning it with the ingrowth threshold, while β is set to202

infinity to allow for an unbounded upper limit.203

2.2.2 Covariates204

Random effects - We introduced plot-level random effects in each of the growth, survival, and205

recruitment demographic component to account for shared variance between the individuals within the206

same plot. For a demographic component with an average intercept I, an offset value (α) is drawn for207

each plot j from a normal distribution with a mean of zero and variance σ:208

αj ∼ N(0, σ)

Ij = I + αj

(9)

Where σ represents the variance among all plots j and I can take one of three forms: Γ for growth, ψ209

for survival, and ϕ for the recruitment model.210
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Competition - We used basal area of larger individuals (BAL; asymmetric competition) instead of total211

basal area (BA; symmetric competition), assuming that competition for light is the primary competitive212

factor driving forest dynamics (Pacala et al. 1996). Therefore, each of the growth (Γ), longevity (ψ),213

and recruitment survival (ρ) parameters decreases exponentially with BAL. Take I as one of the three214

parameters, the effect of BAL on I is driven by two parameters describing the conspecific (β) and215

heterospecific (θ) competition:216

I + β(BALcons + θ ×BALhet) (10)

When θ < 1, conspecific competition is stronger than heterospecific competition. Conversely, heterospe-217

cific competition prevails when θ > 1, and when θ = 1, there is no distinction between conspecific and218

heterospecific competition. Note that β is also unbounded, allowing it to converge towards negative219

(indicating competition) or positive (indicating facilitation) values. Furthermore, we fixed θ = 1 for220

the recruitment (I = ρ) due to model convergence issues. The recruitment model also accounts for the221

conspecific density dependence effect on the annual ingrowth rate (ϕ). Specifically, ϕ increases with222

BALcons as a positive effect of seed source up to reach the optimal density of recruitment, δ, where it223

then decreases with more conspecific density due to competition at a rate proportional to σ:224

ϕ+
(
BALcons − δ

σ

)2
(11)

Climate - We selected mean annual temperature (MAT) and mean annual precipitation (MAP)225

bioclimatic variables as they are widely used in species distribution modeling and were previously found226

relevant to model demography of these species (Le Squin et al. 2021). Each demographic component227

I, representing either Γ for growth, ψ for longevity, or ϕ for ingrowth, varies as a bell-shaped curve228

determined by an optimal climate condition (ξ) and a climate breadth parameter (σ):229

I +
(
MAT − ξMAT

σMAT

)2
+

(
MAP − ξMAP

σMAP

)2
(12)
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The climate breadth parameter (σ) influences the strength of the specific climate variable’s effect on230

each demographic component. This unimodal function is flexible, assuming various shapes, such as bell,231

quasi-linear, or flat shapes. However, this flexibility introduces the possibility of parameter degeneracy232

or redundancy, where different combinations of parameter values yield similar outcomes. To address this233

issue, we constrained the optimal climate condition parameter (ξ) within the observed climate range for234

the species, assuming that the optimal climate condition falls within our observed data range.235

2.2.3 Model fit and validation236

We fitted each of the growth, survival, and recruitment models separately for each species, using the237

Hamiltonian Monte Carlo (HMC) algorithm implemented in the Stan software (version 2.30.1 Team238

and Others 2022) with the cmdstandr R package interface (version 0.5.3 Gabry et al. 2023). We239

conducted 2000 iterations for the warm-up and 2000 iterations for the sampling phase for each of the240

four chains, resulting in 8000 posterior samples (excluding the warm-up). However, we kept only the241

last 1000 iterations of the sampling phase to save computation time and storage space, resulting in242

4000 posterior samples. We build and fit each demographic component incrementally, from a simple243

intercept, and gradually incorporate plot random effects, competition, and climate covariates. Recall244

that our goal is not to have the most complex model to achieve the highest predictive metric but to245

make inferences (Tredennick et al. 2021). We focus on assessing the relative effects of climate and246

competition while controlling for other influential factors. Therefore, our modeling approach is guided247

by biological mechanisms, which tend to provide more robust extrapolation (Briscoe et al. 2019) rather248

than being solely dictated by specific statistical metrics. Nevertheless, we checked if increasing model249

complexity with new covariates does not result in worse performance using complementary metrics such250

as mean squared error (MSE), pseudo R2 (Gelman et al. 2019), and Leave-One-Out Cross-Validation251

(LOO-CV). Detailed discussions regarding model fit, diagnostics, and model comparison can be found in252

supplementary material 1.253

With the fitted demographic components, we constructed the Kernel K of the IPM following Equation254

2. We employed the mid-point rule to perform the discrete-form integration of the continuous K255

(Ellner et al. 2016). This involved discretizing the projection kernel K using bins of 0.1 cm, which are256

considered appropriate for obtaining unbiased estimates (Zuidema et al. 2010). Finally, we computed257
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the asymptotic population growth rate (λ) using the leading eigenvalue of the discretized matrix K.258

2.3 Perturbation analysis259

We use perturbation analysis to assess the sensitivity of λ to competition and climate conditions (Caswell260

2000). We define sensitivity as the partial derivative of λ with respect to a covariate X, which can261

take the form of either conspecific or heterospecific density dependence competition, or temperature or262

precipitation climate conditions. In practice, we quantify sensitivity by slightly increasing each covariate263

value Xj to X ′
j and computing the change in λ following the right-hand part of Equation 13:264

∂λij
∂Xj

∣∣∣∣
Kij

≈ ∆λij
∆Xj

=
|f(X ′

j) − f(Xj)|
X

′
j −Xj

(13)

Sensitivity is evaluated separately for each species i and is conditional on the specific climate and265

competition conditions observed for the plot j, along with the Kernel Kij parameters. We set the266

perturbation size to a 1% increase in the normalized scale for each covariate. For instance, a 1%267

increase translates to a rise of 0.3°C for Mean Annual Temperature (MAT) and 26 mm for Mean268

Annual Precipitation (MAP). Because the competition metric is computed at the individual level, the269

perturbation was applied to each individual, where a 1% increase corresponds approximately to a rise of270

1.2 cm in dbh. As we were interested in the absolute difference, the resulting sensitivity value ranges271

between 0 and infinity, with lower values indicating a lower sensitivity of λ to the specific covariate. We272

computed the log ratio between competition and climate (CCR) sensitivities to discern their relative273

effects as follows:274

Scomp,ij = ∂λij
∂BAcons,i

+ ∂λij
∂BAhet,i

Sclim,ij = ∂λij
∂MATi

+ ∂λij
∂MAPi

CCRij = lnScomp,ij
Sclim,ij

(14)

Here, S represents the total sensitivity of species i to competition or climate for a given plot j. Negative275
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CCR values indicate higher sensitivity of λ to climate, while positive values indicate the opposite.276

When averaging SX,i across j, this metric reflects the sensitivity of λi to X, which is conditional upon277

the probability distribution of the covariate X. We categorized each plot into cold, center, or hot278

conditions along the MAT axis for every species. Plots were labeled as cold (or hot) if the average MAT279

fell below (above) the 10% (90%) probability distribution, with all intermediate plots considered center280

plots. Thus, sensitivity to a covariate in the cold range of the species signifies the average sensitivity281

among all plots classified as cold. It is important to note that this classification is also conditional on282

the probability distribution of observed MAT within the species.283

The code to fit each demographic component is available in the TreesDemography GitHub repository.284

The code for the IPM model and the respective sensitivity analysis is available in the forest-IPM285

GitHub repository.286

3 Results287

3.1 Model validation288

All species-specific demographic components demonstrated convergence with R̂ < 1.05 and low to no289

divergent iterations. In comparing the simple intercept model with the more complete versions, the290

LOO-CV consistently favored the complete model for all three demographic rates, featuring plot random291

effects, competition, and climate covariates, over other competing models (supplementary material 1).292

The absolute values of LOO-CV suggested that the growth model gained the most information from293

including covariates, followed by recruitment and survival models. We further validated our model294

predictions by comparing the parameters with traits groups such as growth rate classes, maximum295

observed size, maximum observed age, shade tolerance, and seed mass (Burns et al. 1990, Díaz et al.296

2022).297

The growth model intercept comprises two parameters, one determining the asymptotic size (ζ∞) and298

the annual growth rate Γ. The ζ∞ can be interpreted as the maximum predicted size of the species,299

which correlates well across all 31 species with the maximum observed size in the literature (R2 = 0.31,300

Figure 1). Similarly, Γ among the species exhibited a distribution aligning with the fast, moderate,301

13

https://github.com/willvieira/TreesDemography
https://github.com/willvieira/forest-IPM/tree/master/simulations/covariates_perturbation


and slow-growing traits (Figure S8). In the survival model, the expected longevity (L) can be derived302

from the annual survival rate ( ψ) following the equality L = eψ, showing a high correlation with the303

maximum observed age in the literature (R2 = 0.59, Figure 1). In the recruitment model, the log of the304

annual ingrowth rate (ϕ) reduced linearly with seed mass (Figure S9), capturing the seed mass-growth305

rate tradeoff (Reich et al. 1998). Additionally, the annual survival probability of ingrowth (ρ) decreased306

with intolerance to shade (Figure S10).307

Figure 1: Correlation between predicted asymptotic size (ζ∞) with maximum observed size (left)
and predicted longevity (L) with maximum observed age for the 31 forest species. Maximum
observed size and age are obtained from Burns et al. (1990). The gray line is the identity curve.

Both conspecific and heterospecific competition effects for the growth and survival models increased308

with intolerance to shade (Figure 2). The stronger competition effect of conspecific over heterospecific309

was consistent for almost all species in both growth and survival models. Only two species for growth310

and three for survival among the 31 presented stronger heterospecific competition than conspecific311

competition. Moreover, Fagus grandifolia and Thuja occidentalis exhibited positive density dependence312

for the survival model. For recruitment, the effect of total stand density increased with shade intolerance313

among the species (Figure S11).314

The distribution of optimal MAT (ξMAT ) and MAP (ξMAP ) for the 31 species revealed that the optimal315

climates for growth, survival, and recruitment were rarely located at the center of the species ranges316

(Figure S12 and S13). Furthermore, most species exhibited some degree of demographic compensation,317
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Figure 2: Posterior distribution for the conspecific (red) and heterospecific (blue) density
dependence for each class of shade tolerance (Burns et al. 1990). The more negative the β, the
stronger the competition effect.

that is, opposing responses to the environment between demographic rates (Villellas et al. 2015). Lastly,318

the climate breadth (σ) determined how flat or narrow the performance of species was across MAT and319

MAP. We found among all species that climate breadth increased with range size, demonstrating that320

species with more range occupancy had larger niche breadths. The exception was the niche breadth of321

survival over MAT, showing a weak, flat correlation.322

3.2 λ sensitivity to climate and competition323

We used perturbation analysis to assess the relative contribution of each covariate to changes in λ.324

Figure 3 describes the average sensitivity of each species’ population growth rate to conspecific and325

heterospecific competition, temperature, and precipitation. Across all species, λ exhibited higher326

sensitivity to temperature, followed by conspecific and heterospecific competition, while sensitivity to327

mean annual precipitation was practically zero. This observation of sensitivity to the covariates was328

consistent across all species.329

We split plots into different regions to ask for each species if sensitivity to climate and competition330
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Figure 3: Log sensitivity of species population growth rate to conspecific competition, heterospe-
cific competition, mean annual temperature, and mean annual precipitation across all plot-year
observations. The smaller the values, the lower the sensitivity to a covariate.
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changes between cold and hot portions of the range (Figure 4). We evaluate the sensitivity of each331

species’ border location according to the average Mean Annual Temperature (MAT) among all plots332

of the species’ border group. Species distributed toward colder temperature ranges often exhibited a333

decrease in sensitivity to climate from the cold to the hot border. Conversely, most species in the hot334

range distribution demonstrated increased sensitivity to climate at the hot border compared to the cold.335

Most species also presented a decreased sensitivity to competition from the cold to the hot border. The336

decrease in sensitivity to competition from the cold to the hot border was more pronounced for boreal337

species.338

Figure 4: Differences in species population growth rate sensitivity to climate (left) and competition
between the cold and hot range limits. Each species is represented by a connected line linking
their cold (circle) and hot (triangle) range positions, colored according to the difference between
the cold and hot sensitivities. Note that uncertainty in each sensitivity point estimation has been
omitted for clarity.

We further explore the relative sensitivity between climate and competition changes across the species’339

range distribution (Figure 5). λ was more sensitive to climate than competition for almost all species340

across the cold, center, and hot ranges (ln(CCR) below zero). Across the MAT range distribution,341

the relative effect of climate to competition increased toward both the cold and hot borders of the342

range. This indicates that species located at the extremes of the MAT range distribution are even more343

sensitive to climate than species at the center. Interestingly, the reason for this increase is not the344
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same for the cold and hot ranges. In the cold range, the sensitivity of λ increased for both climate345

and competition but was proportionally larger for climate. Conversely, in the hot range, the relative346

sensitivity to climate increased due to a significant decrease in sensitivity to competition.347

Figure 5: Bottom panels describe the sensitivity of species population growth rate to competition
(green) and climate (yellow) across the cold, center, and hot temperature ranges. The top panels
show the log ratio between competition and climate sensitivities, where negative values mean
climate sensitivity is relatively higher than competition. We defined each species’ temperature
range position as the median Mean Annual Temperature across all observed plots for each cold,
center, and hot range class. In the bottom panel, species points are grouped by a Multivariate
Normal Density function with 75% probability, while in the top panel, the lines represent the 25,
50, and 75% quantile probabilities.

4 Discussion348

We developed an integral projection model for 31 tree species linking growth, survival, and recruitment349

to stand level λ in order to assess the sensitivity of λ to climate and competition. Our model advances350

previous analysis of tree species performance by (i) explicitly incorporating climate and competition351

effects in the recruitment model, (ii) distinguishing between conspecific and heterospecific competition,352

18



while (iii) tracking model’s uncertainty at both the individual and plot levels. Moreover, we designed353

a modular approach that is easily extendable to include any of the over 200 available species in the354

dataset and additional covariates influencing each demographic rate.355

The results reveal that, for all species, adding climate and competition covariates enhances the pre-356

dictability of all demographic components in comparison to a simple random effect model without357

covariates. Nevertheless, the most influential variable remained the local plot conditions captured by the358

random effects. Therefore, we evaluated species sensitivity to climate and competition while considering359

plot-level variability. Across the species and their respective ranges, we found that λ was more sensitive360

to temperature and conspecific basal area of larger individuals. Furthermore, these sensitivities were361

contingent on the range position of the species, with climate being relatively more important than362

competition at both the cold and hot range border. These findings contribute to a better understanding363

of how tree species might respond to novel conditions arising from climate change and perturbations,364

providing valuable insights for their management.365

Fit of demographic components366

Our model demonstrated remarkable coherence when reproducing the known variation in traits related367

to growth, survival, and recruitment components found in the literature. The intercepts for growth and368

survival were correlated with maximal size and longevity (Burns et al. 1990), while the recruitment369

intercept aligned well with the seed mass (Díaz et al. 2022). Additionally, the models effectively370

reproduced the fast-slow continuum (Salguero-Gómez et al. 2016), showing a negative correlation371

between growth and survival rate and a positive correlation between growth and recruitment rate372

(Figure S14). Regarding competition, the model captured the negative correlation between density373

dependence and shade tolerance. The model also matches a common expectation of communities where374

species coexist, with a stronger response to conspecific competition relative to heterospecific competition,375

crucial for biodiversity maintenance (Chesson 2000). The intensity of conspecific density dependence376

was also higher for fast-growing trees than for slow-growing ones (Figure S15), similar to observations in377

tropical trees (Zhu et al. 2018). For climate, validation is challenging due to limited data on optimal378

temperature and precipitation measures. Nevertheless, our results align with others, indicating the379

presence of demographic compensation across forest trees (Bohner and Diez 2020, Yang et al. 2022).380
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Furthermore, the estimated breadth of response to climate correlates with the range size (Figure S16),381

suggesting that the model captures information not explicitly included.382

Most of the variability in λ was associated with local plot conditions captured by random effects,383

akin to previous studies (Vanderwel et al. 2016, Le Squin et al. 2021). This implies the influence of384

other determinants of demography beyond climate and competition. For instance, at a local scale, soil385

nitrogen content (Ibáñez et al. 2018) and mixed mycorrhizal associations (Luo et al. 2023) can enhance386

growth rates. At larger scales, events such as wildfires and insect outbreaks play crucial roles in forest387

dynamics and stand structure (Franklin et al. 2002), causing synchronized mortality and altering stand388

composition and abundance. While we focused on quantifying the effect of climate and competition,389

other covariates may have greater importance in driving variance in demographic rates. For instance,390

tree growth models showed improved estimates when accounting for extreme climatic events (Sanginés391

de Cárcer et al. 2017), and unusual drought events, rather than average precipitation, were the highest392

predictors of tree fecundity after temperature (Clark et al. 2011).393

λ sensitivity to climate and competition394

We found that the sensitivity of λ was higher for temperature, followed by conspecific competition, across395

the species. Studies examining the relative impacts of climate and competition on tree performance yield396

diverse outcomes. For instance, while some suggest that competition has a higher effect on growth than397

climate (Gómez-Aparicio et al. 2011, Le Squin et al. 2021), others find the opposite (Copenhaver-Parry398

and Cannon 2016). Furthermore, the relative effect between climate and competition can change399

between demographic components, where growth is more sensitive to competition while fecundity to400

climate (Clark et al. 2011). This disparity may arise from a tendency to evaluate sensitivity to specific401

demographic rates rather than considering their integrated effects. This is particularly critical since the402

population growth rate does not respond equally to all covariates. We performed additional sensitivity403

analyses, which revealed that most species are primarily sensitive to recruitment, followed by survival,404

with a relatively lower impact from growth (see Supplementary Material 3).405

Assessing climate sensitivity across the species range distribution revealed divergent responses. As406

species’ performance changes nonlinearly with climate, lower sensitivity values to a climate covariate407

indicate that the species operates under optimal climate conditions, whereas higher sensitivity values408
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suggest the species is deviating from its optimal climate condition. Overall, climate sensitivity (primarily409

driven by MAT) was higher at both the cold and hot range extremes. This implies that species coming410

from colder temperatures exhibit optimal performance towards their warmer range, and vice versa for411

species from hotter conditions. Interestingly, the demographic components driving higher sensitivity to412

climate at the cold and hot extremes differ. The recruitment and growth models primarily influenced413

sensitivity at the cold border, while the survival model dominated at the hot border (see Figure S17).414

Previous studies have indicated climate-constrained growth rates at the cold border for North American415

(Ettinger and HilleRisLambers 2013) and European (Kunstler et al. 2021) trees. Consistent with our416

results, a decrease in survival at the hot border was observed for European trees (Kunstler et al. 2021),417

though not in eastern North America (Purves 2009).418

The sensitivity of λ to competition increased almost linearly toward colder temperatures for most species.419

Due to the nonlinearity between species’ performance and competition, the sensitivity of λ to changes420

in competition decreases as stand density increases (negative exponential shape). This implies that the421

observed decrease in sensitivity to competition toward the hot range results from an overall increase in422

stand density (i.e. competition intensity). Indeed, biotic interactions are often more critical at the warm423

range border (Paquette and Hargreaves 2021). However, when evaluating only the growth rate of North424

American (Ettinger and HilleRisLambers 2013) and European (Kunstler et al. 2011) trees, the effect of425

competition remains constant across the climate range.426

Limitations and Future Perspectives427

Structured population models, such as the IPM, play a crucial role in capturing ontogenetic variability428

within tree population dynamics. While the growth model inherently considers individual size, the429

survival and recruitment models are size-independent. We attempted to incorporate the widely assumed430

“U-shape” form of mortality rate changes with individual size (Lines et al. 2010), but it performed431

worse than the simple random effects one (Figure S6). Mortality has been observed to increase with432

individual size (Luo and Chen 2011, Hember et al. 2017), but its significance appears to manifest only433

when interacting with climate and competition (Le Squin et al. 2021). The challenge in capturing434

size dependence in the survival model likely stems from the lack of information on small individuals435

(dbh < 12.7 cm) and the rarity of larger individuals in datasets, even for extensive forest inventories436
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(Canham and Murphy 2017). Despite not explicitly including individual size in the survival model, its437

indirect influence is included with the asymmetric competition, where smaller individuals experience438

higher competitive pressure. Another limitation of this model, shared with many models using forest439

inventory data (Kunstler2021; Le Squin et al. 2021, Guyennon et al. 2023), is its focus on adults, while440

tree fecundity can be influenced by climate (Clark et al. 2021), and the dynamics of recruitment may441

not necessarily align with those of adults (Serra-Diaz et al. 2016, Wason and Dovciak 2017, but see442

Canham and Murphy 2016).443

The modular nature of our approach makes it easily extensible to include new species or covariates. For444

instance, additional covariates such as water balance or evapotranspiration could be tested to evaluate the445

impact of drought-induced mortality (Peng et al. 2011). Furthermore, exploring the interaction between446

climate, competition, and individual size can enhance predictions of demographic rates (Peng et al.447

2011, Rollinson et al. 2016, Ford et al. 2017, Le Squin et al. 2021). An overlooked but computationally448

expensive improvement involves jointly fitting the growth, survival, and recruitment models. This449

would enable leveraging ecological knowledge, such as life history tradeoffs, by sharing information450

between processes with abundant data (e.g. growth) and those with scarce data (e.g. recruitment).451

Future steps should focus on better understanding the variability captured by random effects and452

translating it into ecological processes. While we addressed individual and plot-level model uncertainty,453

further considerations for other sources of variability arising from temporal stochasticity in climate and454

competition covariates are essential. This will enhance our understanding of the effects of spatiotemporal455

variability on species performance across their range (Holt et al. 2022).456
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